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Code: https://github.com/tech-srl/bottleneck/

Contributions:
1. Introducing the over-squashing phenomenon of GNNSs.

2. We show that GCN and GIN are more susceptible to over-squashing than GAT and GGNN.
3. We show that extensively tuned prior models suffer from over-squashing.
1. A synthetic problem of the worst case of over-squashing and its theoretical analysis.
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Figure 1: The bottleneck that existed in RNN seqg2seq models (before attention) is strictly more harmful in GNNs: information from a node’s exponentially-growing receptive field is compressed into a fixed-size vector. Black arrows are graph edges; red curved arrows illustrate information flow.
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Figure 2: The NEIGHBORSMATCH: green nodes (4, s, ¢) have blue 0.5 (k) . | (k=1)
neighbors () and an alphabetical label. The goal is to predict the label 0.2 GAT:  h,” = ReLU (MultlHeadAttenthn (Nv | h, )) 500 - 243
(A, B, or C) of the green node that has the same number of blue 0.1 200
neighbors as the target node (2) in the same graph. 106
In this example, the correct label is C, because the target node has two ) 2 3 4 5 6 7 8 GGNN: hgk) — |GRU (hgjk_l), ZuENV Wneighborhglk_l)) 100 i 45
blue neighbors, like the node marked with C in the same graph. Every r (the problem radius) 0 - ;
example in the dataset has a different mapping from numbers of blue Figure 3: Accuracy across problem radius (tree depth) in the 2 . 4 ) 6 78 > 101
neighbors to alphabetical labels. Since information from the entire NEIGHBORSMATCH problem. Over-squashing starts to affect GCN and The problem radius r
graph needs to flow into the target node, a bottleneck at the target GIN even at r = 4. Figure 4: Combinatorial and empirical lower bounds of the model
node is inevitable. dimension given the problem radius.

A Simple Temporary Solution: Modifying the Last Layer to be Fully-Adjacent (FA) Over-squashing vs. Over-smoothing
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Figure 5: A possible solution: modifying the last layer to be a fully adjacent layer. The K — 1 GNN d . 0 NC | disti ishabl |
layers exploit the graph structure using their original sparse topology, and only the K-th layer is an -3% error reduction In 1 ong-range patterns Istinguishable ong-range patterns

FA layer that allows the topology-aware node-representations to interact directly and consider nodes -12% error reduction in ENZYMES
beyond their original neighbors. This simple solution’s purpose is merely to demonstrate that

over-squashing in GNNs is so prevalent and untreated that even the simplest solution helps.



