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Contributions:

1. Introducing the over-squashing phenomenon of GNNs.
2. We show that GCN and GIN are more susceptible to over-squashing than GAT and GGNN.
3. We show that extensively tuned prior models su�er from over-squashing.
4. A synthetic problem of the worst case of over-squashing and its theoretical analysis.
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Figure 1: The bo�leneck that existed in RNN seq2seq models (before a�ention) is strictly more harmful in GNNs: information from a node’s exponentially-growing receptive field is compressed into a fixed-size vector. Black arrows are graph edges; red curved arrows illustrate information flow.

Synthetic Problem:

NeighborsMatch
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Figure 2: The NeighborsMatch: green nodes ( A , B , C ) have blue
neighbors ( A ) and an alphabetical label. The goal is to predict the label
(A, B, or C) of the green node that has the same number of blue
neighbors as the target node ( ? ) in the same graph.
In this example, the correct label is C, because the target node has two
blue neighbors, like the node marked with C in the same graph. Every
example in the dataset has a di�erent mapping from numbers of blue
neighbors to alphabetical labels. Since information from the entire
graph needs to flow into the target node, a bo�leneck at the target
node is inevitable.

Over-squashing Prevents GNNs

from Fi�ing the Training Data
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Figure 3: Accuracy across problem radius (tree depth) in the
NeighborsMatch problem. Over-squashing starts to a�ect GCN and
GIN even at r = 4.

Di�erent GNNs are A�ected by

Over-Squashing Di�erently
GCN and GIN perform a temporary summation
of neighbors:
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Theoretical Analysis: The GNN’s

Hidden Size Must Grow Much

Faster than the Number of Layers

d — the GNN’s hidden size

r — the problem radius 232·d > (2
r)!
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Figure 4: Combinatorial and empirical lower bounds of the model
dimension given the problem radius.

A Simple Temporary Solution: Modifying the Last Layer to be Fully-Adjacent (FA)

Improves SoTA Results Without Tuning
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Figure 5: A possible solution: modifying the last layer to be a fully adjacent layer. The K − 1 GNN
layers exploit the graph structure using their original sparse topology, and only the K-th layer is an
FA layer that allows the topology-aware node-representations to interact directly and consider nodes
beyond their original neighbors. This simple solution’s purpose is merely to demonstrate that
over-squashing in GNNs is so prevalent and untreated that even the simplest solution helps.

This simple modification improves previous models without
tuning and without adding weights:

I +1% accuracy increase in VarMisuse
I -40% error reduction in QM9
I -5% error reduction in NCI1
I -12% error reduction in ENZYMES

Over-squashing vs. Over-smoothing

r — the problem radius
K – the number of layers

K < r K >> r K = R >> 1
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