
On the Bottleneck of Graph Neural Networks and its Practical Implications
Uri Alon, Eran Yahav

Code: h�ps://github.com/tech-srl/bo�leneck/

Contributions:

1. Introducing the over-squashing phenomenon of GNNs.
2. We show that GCN and GIN are more susceptible to over-squashing than GAT and GGNN.
3. We show that extensively tuned prior models su�er from over-squashing.
4. A synthetic problem of the worst case of over-squashing and its theoretical analysis.

The Bo�leneck of RNNs: The Bo�leneck of GNNs:

Bottleneck

input sequence

Bottleneck

Figure 1: The bo�leneck that existed in RNN seq2seq models (before a�ention) is strictly more harmful in GNNs: information from a node’s exponentially-growing receptive field is compressed into a fixed-size vector. Black arrows are graph edges; red curved arrows illustrate information flow.

Synthetic Problem:

NeighborsMatch

CBA D GFE H

?

Figure 2: The NeighborsMatch: green nodes (A , B , C) have blue
neighbors (A) and an alphabetical label. The goal is to predict the label
(A, B, or C) of the green node that has the same number of blue
neighbors as the target node (?) in the same graph.
In this example, the correct label is C, because the target node has two
blue neighbors, like the node marked with C in the same graph. Every
example in the dataset has a di�erent mapping from numbers of blue
neighbors to alphabetical labels. Since information from the entire
graph needs to flow into the target node, a bo�leneck at the target
node is inevitable.

Over-squashing Prevents GNNs

from Fi�ing the Training Data

2 3 4 5 6 7 80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1.0

0.60

0.38

0.21
0.16

0.41

0.77

0.29

1.0

0.70

0.19
0.14

0.09 0.08

r (the problem radius)

Train
Acc

GGNN
GAT
GIN
GCN

Figure 3: Accuracy across problem radius (tree depth) in the
NeighborsMatch problem. Over-squashing starts to a�ect GCN and
GIN even at r = 4.

Di�erent GNNs are A�ected by

Over-Squashing Di�erently
GCN and GIN perform a temporary summation
of neighbors:

I GCN: h(k)v = ReLU
(
W (k)

∑
u∈Nv∪{v}

1
cv,u

h(k−1)u

)
I GIN: h(k)v = MLP (k)

((
1 + ϵ (k)

)
h(k−1)v +

∑
u∈Nv

h(k−1)u

)
I GAT: h(k)v = ReLU

(
MultiHeadAttention

(
Nv | h

(k−1)
v

))
I GGNN: h(k)v = GRU

(
h(k−1)v ,

∑
u∈Nv

Wneighborh
(k−1)
u

)

Theoretical Analysis: The GNN’s

Hidden Size Must Grow Much

Faster than the Number of Layers

d — the GNN’s hidden size

r — the problem radius 232·d > (2
r)!

22r−1

2 3 4 5 6 7 8 9 10 11
0

100

200

300

400

500

600

4 16
64

128

256

512

1 1 1 3 8 19
45

106

243

548

The problem radius r

Empirical min d
Combinatorial min d

Figure 4: Combinatorial and empirical lower bounds of the model
dimension given the problem radius.

A Simple Temporary Solution: Modifying the Last Layer to be Fully-Adjacent (FA)

Improves SoTA Results Without Tuning

Layer 1 Layer 2 Layer K

Figure 5: A possible solution: modifying the last layer to be a fully adjacent layer. The K − 1 GNN
layers exploit the graph structure using their original sparse topology, and only the K-th layer is an
FA layer that allows the topology-aware node-representations to interact directly and consider nodes
beyond their original neighbors. This simple solution’s purpose is merely to demonstrate that
over-squashing in GNNs is so prevalent and untreated that even the simplest solution helps.

This simple modification improves previous models without
tuning and without adding weights:

I +1% accuracy increase in VarMisuse
I -40% error reduction in QM9
I -5% error reduction in NCI1
I -12% error reduction in ENZYMES

Over-squashing vs. Over-smoothing

r — the problem radius
K – the number of layers

K < r K >> r K = R >> 1

Under-reaching Over-smoothing Over-squashing

The GNN cannot fit
long-range pa�erns

Nodes go in-
distinguishable

The GNN fails to fit
long-range pa�erns

