1. Task: Contextualized ASR

- Context provided in addition to audio can help reduce WER significantly.
- Such user-specific contextual information can include:
 - The user’s list of songs
 - The user’s contact list
 - The currently installed apps
- Proper nouns are very frequent in various ASR tasks:
 - “Call Joan’s mobile”
 - “Play Taylor Swift”
 - “How tall is LeBron James?”
- But contextual ASR models usually perform poorly on rare words and especially on proper nouns (NNPs).

2. The Contextualized LAS (CLAS) Model (Pundak et al., SLT’2018)

- CLAS is an E2E ASR model based on the Listen-Attend-and-Spell (LAS) encoder-decoder architecture.
- The key difference from LAS: biasing sub-module.

3. The Problem: The Network Fails to Distinguish Between Phonetically Similar Phrases

- Disambiguation of similarly sounding phrases is challenging.
- The network makes even more mistakes as the set of bias phrases becomes larger.

4. Training with Difficult Negative Examples

- During training, we provide the network with phonetically similar proper nouns (NNPs) as the “distractors”.
- This way, we encourage the network to:
 - Distinguish between similarly sounding phrases
 - Learn more discriminative representations.

5. Evaluation

- We experimented with the following training schemes:
 - Vanilla CLAS
 - CLAS+NNP
 - CLAS+fuzzy
 - CLAS NNP+fuzzy
- Bias Phrases Selection: Random
- Distractor Selection: Random NNPs from reference
- Results:

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Songs</th>
<th>Contacts</th>
<th>Talk-To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vanilla CLAS</td>
<td>9.8</td>
<td>11.3</td>
<td>15.2</td>
</tr>
<tr>
<td>CLAS+NNP</td>
<td>6.7 (31.6%)</td>
<td>6.1 (46.0%)</td>
<td>14.8 (26.5%)</td>
</tr>
<tr>
<td>CLAS+fuzzy</td>
<td>5.4 (44.9%)</td>
<td>5.3 (51.1%)</td>
<td>14.8 (26.5%)</td>
</tr>
<tr>
<td>CLAS NNP+fuzzy</td>
<td>5.4 (44.9%)</td>
<td>5.3 (51.1%)</td>
<td>14.8 (26.5%)</td>
</tr>
</tbody>
</table>

6. Qualitative Analysis

- The fuzzy model attends mostly to “creepy carrots” and makes a correct prediction, while the non-fuzzy model attends to “sleepy carrots” and predicts the wrong word “sleepy.”

References
