code2vec:

Learning Distributed Representations of Code

‘éi’

Uri Alon, Meital Zilberstein, Omer Levy, Eran Yahav

Facebook Al
Research

ﬁ Technion

SEVENTH FRAMEWORK
PROGRAMME

Predicting Properties of Programs

Program

P =

Property
= ¢

Trained
Model

A Motivating Example: Semantic Labeling of Code

String[] (final String[] array) {
final String[] newArray = new Stringl[array.length];
for (int index = 0; 1ndex < array.length; index++) {
newArraylarray.length - 1ndex - 1] = arrayl[index];

}

return newArray;

Program Property
Trained
P = = @
e
Training data 83;25 Test data: (P', @)

(millions of examples): <

Program Property
P = = @
4
Training data 82:25 Test data: (P, @)

(millions of examples): <

Code2vec: a neural network for predicting properties of code

M samim

OoQ @samim

code2vec: Learninc
Representations of
arxiv.org/abs/1803

Ic MethodDec!
RO o S ¥
Pomitive Name: ?xlumk‘lﬂ

I e
|boolean] [? (Class » Varbeclld
I L § .
Object target = var

Class v

Object = v

2:13 AM - 31 Mar 2018

22 Retweets 65 Likes ' e «

Q a2 O 65

source{d}
@sourcedtech

Really interesting paper on #MLonCode witl
an approach based on paths in ASTs

"code2vec: Learning Distributed

Representations of Code"

by Uri Alon, Meital Zilberstein, @omerlevy_,

and @yahave

Take this as an open invitation to visit our

offices &

L buff.ly/2GupEv4

8:00 AM - 4 Apr 2018

17 Retweets 44 Likes z e e ”e ° y 90

Follow)

®

code2vec: Learning Distributed
Representations of Code

ML Review
@ml_review

A @ Kyosuke Nishida (rollow) v
(@kyoun ks -

code2vec (Technion)
arxiv.org/abs/1803.09473 JavaxX / v F @
abstract syntax treeD /X XEEN L Z DEE
ERTELTERNT BT TavyETILO
B TcodezEENY bIVICEME compare +

: . - Case #HE2ET
arxiv.org/abs/1803.09473 #Machin (98" = Comparsignorecase -

12:40 AM - 30 Mar 2018

19 Retweets 61 Likes

O

sahArray

Fig. 5. Examples for predictions from our model, The width of each path is proportion:

it was given.

T 19

L9°2-©6500

\V

61

()

UMD XYy RTFEE, A Miles Brundage ' Follow N g
@ Translate from Japanese @M iles_Eruncl age -_ -J".

ement®) |

A

“code2vec: Learning Distributed
Representations of Code,” Alon et al.:
arxiv.org/abs/1803.09473

10:53 PM - 27 Mar 2018

- - - .
ree methods that have a similar syntactic stri 21 Retweets 36 Likes . ikl o o ‘ ‘ = ' 's

fferences between them and manages to
:hs are proportional to the attention that eai

21 O 36 |

2:55 PM - 31 Mar 2018 O

1 Retweets 27 Likes @ e..e. X)

Code2vec: a neural network for predicting properties of code

Example application: predicting method names

String|[] (...) |
final String[] = ...;

‘ reverseArray

return newArray;

}

How does code?vec work?

Neural Networks

* Sequences of simple algebraic functions over vectors and matrices

« Asimple example: Predict how positive is a given sentence (regression)

a2 mmmTm ave HE N

good W .‘_\> . _,I:W:I,.ﬁ{n(.)_> Score= || Truth=
e

/ . . . 7.6 9.4
/ . ' . ' . < | Loss(pred, truth)

talk 1D W

dloss dloss
vec « vec — Wew—«o
dvec ow

Back to our problem

Two main challenges in encoding programs:

1. How to decompose programs to smaller building blocks?
 Small enough to repeat across programs

. the “bias-variance tradeoff”
e Large enough to be meaningful

2. How do we aggregate a set of these building blocks?

11

Code2vec: High-level Overview

String|] (..

return newArray;

}

.)
final String[] = ...;

{

Decompose

Aggregate

Predict

12

Learning 1
Effort
Training

data, time...

Challenge

f

Implicitly re-learn syntactic &
semantic regularities

Sweet-spot

qguires ex
language-specific, task-
------------ , specific model

ﬁ

: . Analysis
I I I I I~ Effort
Surface text AST Handcrafted Data flow Control flow
(token stream) Pgths features Analysis Analysis
[“A General Path-based Representation for Predicting Program Properties”, PLDI’2018]

13

A Program as a Set of AST Paths

while (!done) {
if (someCondition()) {
done = true;

¥

(done, SymbolRef 1

=)

While

----.-llllllllllllllll......

UnaryPrefix! If
1
IRef
SymbolRe can Assign=
SymbolRef SymbolRef
1

someCondition

[“A General Path-based Representation for Predicting Program Properties”, PLDI’2018]

True

true

14

Representing AST-Paths as Vectors

Two sets of learned vectors:
 Token vectors
e Path vectors

(done, gmbolRefTUnaryPrefix!TWhiIeiIfiAssignziSymbolF@, done)

lookup lookup lookup
(token vectors) (path vectors) (token vectors)

tanh([w]- [D= T

path_context

fully—connected layer

15

=
Challenge #2: Aggregating a th Contexts
\.

I —

ImE T E-
N D— EEE
mew

Attention

Core idea - the values of the vectors learn two distinct goals:
1. The semantic meaning of the path-context
2. The amount of attention this path-context should get

— learned
» dot Softmax

= attention vector/' Xnormalize)

m W05 . code vector
pat I e
[—
contexts o .8

BN W07 A learned weighted average!

17

Code2vec Architecture

Program -

Bag of contexts

(tokenl, path, token2)

Q00| 1000

— 1IN

Decompose

Q00

Y
/

attention

: | weights

code vector

tanh(W-x) ‘ ’:j Aggregate

target

olel IU]e

softmax

vectors

—¥ prediction

Predict

&

18

@3°@J (Object

L)(Object(targ { Object (f)

(int target) {

) .equals (target)) {

ieturn this(@éféultVéiﬁé;

} } i
Predictions: Predictions

contains GO 90.93% get) 31.09%
matches |) 3.54% getProperty @) 20.25%
canHandle P) 1.15% getValue |) 14.34%
equals ——) 0.87% getElement @) 14.00%
containsExact C——————) 0.77% getObject | F———) 6.05%

19

MethodDecl

CFeS oot P ot
boolean| [?|(Class) VarDeclld “Foreach 3 { Return)

Object| | target (Block)
@ @ ThisExpr @ @ false
Object| C VarDeclld O |this||elements @
elen (Name) (Name) (Name) (Return

= Attention provides interpretability! [elem][equals][target

true

20

MethodDecl
Cprimitive ™ (Name

boolean . VarDeclld

Object

Forcach+

target VarDeclExpr FieldAccess @ BooleanExpr

Object

VarDeclld

elem

this

— Attention provides interpretability!

@ false

elements| ¢ MethodCall @

elem| equals

target

BooleanExpr

true

21

MethodDecl

CFreS s P ot
boolean| [?|(Class) VarDeclld “Foreach 3 (Return)

Object| | target (Block)
@ @ ThisExpr @ @ false
Object| C VarDeclld O |this||elements @
elen (Name) (Name) (Name) (Return

— Attention provides interpretability! |elem][equals][target

true

22

The Vector Space of Target Labels

ilar labels.

m

ilar vectors are learned for semantically s

Ine-sim

Cos

23

The Vector Space of Target Labels

Cosine-similar vectors are learned for semantically similar labels.

getchildcount

getparametercount
rgcount
getpatiery™®”
selbyiccoum
fR—
et
e
eersioucm 0SS gOCOUL etpagecount
o p—
sssmeresmssur
gettieideount
P e -
— counter gevtemesungeiresultoo:
countall
mmmmmmm
o Getvertaxcount i
ethicount
i
plomniyeede counter ant
traceoun -
¢ S count
e—— ot
st P Ingetvalincount
— seachooumt N
ey swwss getupdatecour
oo
[SESCCOUINTNIER
—

24

« = C @& https://code2vec.org

CODEZ2VEC

http://code2vec.org

MOST SIMILAR ©

count

...is similar to:

PREDICT

getCount

size

25

< —> (C & hitps//code2vecorg

CODEZVEC

http://code2vec.org

COMBINATIONS ©

equals and toLower

...combined, are similar to:

PREDICT

equalsignoreCase

isUpperCase

equiv

26

« = C @ https://code2vec.org

CODE2VEC

receive

Is to

http://code2vec.org

ANALOGIES ©

download as...

...is to:

PREDICT

upload

delete

connect

send

27

CODE Z VEC

CODEZ2VEC: LEARNING DISTRIBUTED REPRESENTATIONS OF CODE

Source

Paper Examples

boolean f(Object target) {
for (Object elem: this.elements) {
if (elem.equals(target)) {
return true;
}

}

return false;

.
| 1.15%
| 0.87%

| 0.77%

@) @ QO OO0QO00OO O

AST

Method
Declaration

Parameter

boolean f

Object

Declaration
EXpr

this

true

http://code2vec.org

28

<« C' @ GitHub, Inc. [US] | https://github.com/tech-srl/code2vec a %

Pull requests Issues Marketplace Explore

E tech-srl / code2vec

<> Code ssues 0 Pull requests 0 Projects © Wiki . St 2 56

TensorFlow code for the neural network presented in the paper: "code2vec: Leal
https://code2vec.org

codedvec earning distributed representations of code technion Manage topics
P 18 commits 1 branch © 0 releases 21 2 contributors afs MIT

Branch: master = New pull request Create new file = Upload files | Find file Clone or download ~
m urialon Update README - adding link to the final POPL PCF Latest commit dc7668@ 16 days ago
i CSharpExtractor Adding CSharpExtractor 23 days ago
il Javabxtractor update old version of jackson 23 days ago
| images initial commit 2 months ago
E) Inputjava initial commit 2 months ago
[E) LICENSE initial commit 2 months ago
[E) PathContextReader.py fix reference to config.NUM_EXAMPLES in PathContextReader, which does... 2 months ago
[E) README.md Update README - adding link to the final POFL PDF 16 days ago
E _init_.py initial commit 2 months ago
E] build_extractor.sh initial commit 2 months ago
E] code2vec.py initial commit 2 months ago
E] common.py initial commit 2 months ago
[E) extractor.py initial commit 2 months ago
[E) interactive_predict.py initial commit 2 months ago
&) model.py Renaming variables to make it clear where the code vectors are 20 days ago
E| preprocess.py initial commit 2 months ago
E] preprocess.sh initial commit 2 months ago
[E] preprocess_csharp.sh Adding CSharpExtractor 23 days ago
E) train.sh initial commit 2 months ago
README.md ra

Code2vec

A neural network for learning distributed representations of code. This is an official implemention of the model described in:

Uri Alon, Meital Zilberstein, Omer Levy and Eran Yahav, "code2vec: Learning Distributed Representations of Code”, POPL'2013
[PDF]

Summary

e Core ideas in learning code snippets:
1. Representing a code snippet as a set of syntactic paths

2. Aggregate all paths using neural attention
* A simple and fast to train architecture
* Interpretable thanks to the attention mechanism

* The learned vectors capture interesting phenomena

http://code2vec.org

30

How many paths do you take from each code
snippet? Taking all paths is quadratic!

e An unlimited number!

* Since attention is simply a weighted average, it can handle an arbitrary
number of path-contexts.

* Empirically, we found that sampling 200 from each code example is sufficient.
~200 is also the average number of paths per example.

* This number (200) can be easily increased if the dataset contained especially
large pieces of code.

e Paths that are missed due to sampling are “covered” by other paths.

31

Why not performing additional control flow or
data flow analyses?

* These might help, but we are not sure they are necessary here. Most
of the important signals are expressed in the syntax.

* Our pure-syntactic approach has the advantage of generality — the
same approach can be easily applied to other languages.

* Semantic analysis is probably necessary in other tasks (for example,
when the programs are binaries).

32

How robust are the results for variable

renaming?

* As any machine learning model, confusing or adversarial
examples can mislead our model.

* Since the network was trained on “well-named” examples
from top-starred GitHub projects, it does perform worse
without names.

* We are exploring similar approaches for obfuscated code as
part of ongoing research.

33

Do you keep vectors for all paths and tokens?

* Almost alll
* Limiting to the most occurring 1M tokens, 1M paths, and 300k target labels.

e Each token and path vectors has 128 elements of 4 bytes (float32)
* Each target vector has 384 elements of 4 bytes

* Attention vector has 384 elements

* Fully connected layer is a matrix of size 384 X 384

v N—— —— ——
token+path vector target attention fully—
vocab

vocab size connected
sizes

vector

* Total size: 128-4-<}M+1M>+384-4- 300k + 384 + 384° =~ 1.5GB

e Standard GPU memory size: 12 GB

34

Did you try Gated Graph NNs (Allamanis et al.,
ICLR’2018)?

* GGNNs were applied to a simpler task of Var-Misuse.
* Their code is not fully available.

 Two conceptual advantages of code2vec over GGNNs:

1. Much faster to train - thus practically easier to leverage huge
corpora (our dataset is orders of magnitude larger).

2. Our model is purely syntactic - the same algorithm can work for
every programming language. In GGNNs, the edges in the graph
are analyses like “ComputedFrom” and “LastWrite”, that need to
be re-implemented for different languages.

35

Can a non-neural model solve the same task?

* Yes, and pretty well (PLDI’2018).
* But not as good as a neural model.

* Main advantages of using a neural network:
1. Much better generalization (Section 5 in the paper)
2. Our neural network can produce a vector, which can be fed to a
variety of other (neural and non-neural) ML models and tasks.

36

