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Predicting Properties of Programs
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A Motivating Example: Semantic Labeling of Code

String[] (final String[] array) {
final String[] newArray = new Stringl[array.length];
for (int index = 0; 1ndex < array.length; index++) {
newArraylarray.length - 1ndex - 1] = arrayl[index];

}

return newArray;
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Code2vec: a neural network for predicting properties of code
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Code2vec: a neural network for predicting properties of code

Example application: predicting method names

String|[] (...) |
final String[] = ...;

‘ reverseArray

return newArray;

}




How does code?vec work?



Neural Networks

* Sequences of simple algebraic functions over vectors and matrices

« Asimple example: Predict how positive is a given sentence (regression)
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Back to our problem

Two main challenges in encoding programs:

1. How to decompose programs to smaller building blocks?
 Small enough to repeat across programs

. the “bias-variance tradeoff”
e Large enough to be meaningful

2. How do we aggregate a set of these building blocks?
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Code2vec: High-level Overview
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return newArray;

}
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final String[] = ...;
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A Program as a Set of AST Paths

while (!done) {
if (someCondition()) {
done = true;

¥

(done, SymbolRef 1

=)

While

----.-llllllllllllllll......

UnaryPrefix! If
1
IRef
SymbolRe can Assign=
SymbolRef SymbolRef
1

someCondition

[“A General Path-based Representation for Predicting Program Properties”, PLDI’2018]
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Representing AST-Paths as Vectors

Two sets of learned vectors:
 Token vectors
e Path vectors

(done, gmbolRefTUnaryPrefix!TWhiIeiIfiAssignziSymbolF@, done)

lookup lookup lookup
(token vectors) (path vectors) (token vectors)
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path_context

fully—connected layer
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Attention

Core idea - the values of the vectors learn two distinct goals:
1. The semantic meaning of the path-context
2. The amount of attention this path-context should get

— learned
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= attention vector/' Xnormalize)
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pat I e
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contexts o .8
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Code2vec Architecture
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@3°@J (Object

L)(Object(targ { Object (f)

(int target) {

) .equals (target)) {

ieturn this(@éféultVéiﬁé;

} } i
Predictions: Predictions

contains GO 90.93% get ) 31.09%
matches | ) 3.54% getProperty @ ) 20.25%
canHandle P ) 1.15% getValue | ) 14.34%
equals —— ) 0.87% getElement @ ) 14.00%
containsExact C—————— ) 0.77% getObject | F——— ) 6.05%
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The Vector Space of Target Labels
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The Vector Space of Target Labels

Cosine-similar vectors are learned for semantically similar labels.
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« = C @& https://code2vec.org

CODEZ2VEC

http://code2vec.org

MOST SIMILAR ©
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CODEZVEC
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CODE Z VEC

CODEZ2VEC: LEARNING DISTRIBUTED REPRESENTATIONS OF CODE

Source

Paper Examples

boolean f(Object target) {
for (Object elem: this.elements) {
if (elem.equals(target)) {
return true;
}

}

return false;

.
| 1.15%
| 0.87%

| 0.77%
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<« C' @ GitHub, Inc. [US] | https://github.com/tech-srl/code2vec a %

Pull requests Issues Marketplace Explore

E tech-srl / code2vec

<> Code ssues 0 Pull requests 0 Projects © Wiki . St 2 56

TensorFlow code for the neural network presented in the paper: "code2vec: Leal
https://code2vec.org

codedvec earning distributed representations of code technion Manage topics
P 18 commits 1 branch © 0 releases 21 2 contributors afs MIT

Branch: master = New pull request Create new file = Upload files | Find file Clone or download ~
m urialon Update README - adding link to the final POPL PCF Latest commit dc7668@ 16 days ago
i CSharpExtractor Adding CSharpExtractor 23 days ago
il Javabxtractor update old version of jackson 23 days ago
| images initial commit 2 months ago
E) Inputjava initial commit 2 months ago
[E) LICENSE initial commit 2 months ago
[E) PathContextReader.py fix reference to config.NUM_EXAMPLES in PathContextReader, which does... 2 months ago
[E) README.md Update README - adding link to the final POFL PDF 16 days ago
E _init_.py initial commit 2 months ago
E] build_extractor.sh initial commit 2 months ago
E] code2vec.py initial commit 2 months ago
E] common.py initial commit 2 months ago
[E) extractor.py initial commit 2 months ago
[E) interactive_predict.py initial commit 2 months ago
&) model.py Renaming variables to make it clear where the code vectors are 20 days ago
E| preprocess.py initial commit 2 months ago
E] preprocess.sh initial commit 2 months ago
[E] preprocess_csharp.sh Adding CSharpExtractor 23 days ago
E) train.sh initial commit 2 months ago
README.md ra

Code2vec

A neural network for learning distributed representations of code. This is an official implemention of the model described in:

Uri Alon, Meital Zilberstein, Omer Levy and Eran Yahav, "code2vec: Learning Distributed Representations of Code”, POPL'2013
[PDF]



Summary

e Core ideas in learning code snippets:
1. Representing a code snippet as a set of syntactic paths

2. Aggregate all paths using neural attention
* A simple and fast to train architecture
* Interpretable thanks to the attention mechanism

* The learned vectors capture interesting phenomena

http://code2vec.org
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How many paths do you take from each code
snippet? Taking all paths is quadratic!

e An unlimited number!

* Since attention is simply a weighted average, it can handle an arbitrary
number of path-contexts.

* Empirically, we found that sampling 200 from each code example is sufficient.
~200 is also the average number of paths per example.

* This number (200) can be easily increased if the dataset contained especially
large pieces of code.

e Paths that are missed due to sampling are “covered” by other paths.
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Why not performing additional control flow or
data flow analyses?

* These might help, but we are not sure they are necessary here. Most
of the important signals are expressed in the syntax.

* Our pure-syntactic approach has the advantage of generality — the
same approach can be easily applied to other languages.

* Semantic analysis is probably necessary in other tasks (for example,
when the programs are binaries).
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How robust are the results for variable

renaming?

* As any machine learning model, confusing or adversarial
examples can mislead our model.

* Since the network was trained on “well-named” examples
from top-starred GitHub projects, it does perform worse
without names.

* We are exploring similar approaches for obfuscated code as
part of ongoing research.
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Do you keep vectors for all paths and tokens?

* Almost alll
* Limiting to the most occurring 1M tokens, 1M paths, and 300k target labels.

e Each token and path vectors has 128 elements of 4 bytes (float32)
* Each target vector has 384 elements of 4 bytes

* Attention vector has 384 elements

* Fully connected layer is a matrix of size 384 X 384

v N—— —— ——
token+path vector target attention fully—
vocab

vocab size connected
sizes

vector

* Total size: 128-4-<}M+1M>+384-4- 300k + 384 + 384° =~ 1.5GB

e Standard GPU memory size: 12 GB
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Did you try Gated Graph NNs (Allamanis et al.,
ICLR’2018)?

* GGNNs were applied to a simpler task of Var-Misuse.
* Their code is not fully available.

 Two conceptual advantages of code2vec over GGNNs:

1. Much faster to train - thus practically easier to leverage huge
corpora (our dataset is orders of magnitude larger).

2. Our model is purely syntactic - the same algorithm can work for
every programming language. In GGNNs, the edges in the graph
are analyses like “ComputedFrom” and “LastWrite”, that need to
be re-implemented for different languages.
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Can a non-neural model solve the same task?

* Yes, and pretty well (PLDI’2018).
* But not as good as a neural model.

* Main advantages of using a neural network:
1. Much better generalization (Section 5 in the paper)
2. Our neural network can produce a vector, which can be fed to a
variety of other (neural and non-neural) ML models and tasks.
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