code2vec: Learning Distributed Representations of Code

Uri Alon, Meital Zilberstein, Omer Levy, Eran Yahav

Facebook AI Research

Technion
Predicting Properties of Programs

Program \(P \) \rightarrow Trained Model \rightarrow Property \(\varphi \)
A Motivating Example: Semantic Labeling of Code

```java
String[] reverseArray(final String[] array) {
    final String[] newArray = new String[array.length];
    for (int index = 0; index < array.length; index++) {
        newArray[array.length - index - 1] = array[index];
    }
    return newArray;
}
```

- reverseArray: 77.34%
- reverse: 18.18%
- subArray: 1.45%
Program P \hspace{1cm} Trained Model \hspace{1cm} Property φ

Training data (millions of examples):

\[
(P_1, \varphi_1), \quad (P_2, \varphi_2), \quad \ldots, \quad (P_m, \varphi_m)
\]

Test data: (P', φ')
Program $P \xrightarrow{} \varphi$

Training data (millions of examples): \[
\{(P_1, \varphi_1), (P_2, \varphi_2), \ldots, (P_m, \varphi_m)\}
\]

Test data: (P', φ')
Code2vec: a neural network for predicting properties of code
Code2vec: a neural network for predicting properties of code

Example application: predicting method names

```java
String[] ______(...) {
    final String[] = ...;
    ...
    return newArray;
}
```

• A general approach – has many possible applications:
 • Yes/no malware, required dependencies, keywords / hashtags, clone detection...
How does code2vec work?
Neural Networks

- Sequences of simple algebraic functions over vectors and matrices

- **A simple example**: Predict how positive is a given sentence (regression)

\[\text{Score} = 7.6 \quad \text{Truth} = 9.4 \]

\[\text{Loss}(\text{pred}, \text{truth}) \]

\[\begin{align*}
\text{vec} &\leftarrow \text{vec} - \alpha \frac{\partial \text{loss}}{\partial \text{vec}} \\
\text{w} &\leftarrow \text{w} - \alpha \frac{\partial \text{loss}}{\partial \text{w}}
\end{align*} \]
Back to our problem

Two main challenges in encoding programs:

1. How to decompose programs to smaller building blocks?
 • Small enough to repeat across programs
 • Large enough to be meaningful

2. How do we aggregate a set of these building blocks?

 the “bias-variance tradeoff”
Code2vec: High-level Overview

```
String[] ___(...) {
    final String[] = ...;
    ...
    return newArray;
}
```
Challenge #1: Decomposing Programs

Implicitly re-learn syntactic & semantic regularities

Sweet-spot

Requires expertise, language-specific, task-specific model

[“A General Path-based Representation for Predicting Program Properties”, PLDI’2018]
A Program as a Set of AST Paths

while (!done) {
 if (someCondition()) {
 done = true;
 }
}

(done, SymbolRef ↑)

- AST paths capture some of the semantics, by using only the syntax.
- We represent a program as the set of all its paths.

[“A General Path-based Representation for Predicting Program Properties”, PLDI’2018]
Representing AST-Paths as Vectors

Two sets of learned vectors:
- Token vectors
- Path vectors

\[
\text{tanh}(w \cdot [\text{full-}\text{connected layer}]) = \text{path_context}
\]
Input: an arbitrary-sized set of vectors representing AST paths

- Select the “most important vector”

Challenge #2: Aggregating a Set of Path-Contexts

- Use all vectors, e.g., by averaging them
- Attention – a learned weighted average
Attention

Core idea - the values of the vectors learn two distinct goals:

1. The semantic meaning of the path-context
2. The amount of attention this path-context should get

A learned weighted average!
Predicting method names:
- **Training set**: ~14M examples
- **Training time**: <1 day (very fast) thanks to its simplicity
- **End-to-end**: the entire network is trained simultaneously
boolean f(Object target) {
 for (Object elem: this.elements) {
 if (elem.equals(target)) {
 return true;
 }
 }
 return false;
}

Object f(int target) {
 for (Object elem: this.elements) {
 if (elem.hashCode().equals(target)) {
 return elem;
 }
 }
 return this.defaultValue;
}
⇒ Attention provides interpretability!
⇒ Attention provides interpretability!
⇒ Attention provides interpretability!
The Vector Space of Target Labels

Cosine-similar vectors are learned for semantically similar labels.
The Vector Space of Target Labels

Cosine-similar vectors are learned for semantically similar labels.
http://code2vec.org

MOST SIMILAR

count

...is similar to:

<table>
<thead>
<tr>
<th>predict</th>
<th>getCount</th>
<th>70.02%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>size</td>
<td>69.64%</td>
</tr>
<tr>
<td></td>
<td>index</td>
<td>64.99%</td>
</tr>
</tbody>
</table>
http://code2vec.org

COMBINATIONS

equals and toLower

...combined, are similar to:

PREDICT

equalsIgnoreCase | 78.75%

isUpperCase | 75.82%

equiv | 75.72%
receive is to download as...

...is to:

upload	76.38%
delete	71.53%
connect	70.51%

http://code2vec.org
boolean f(Object target) {
 for (Object elem: this.elements) {
 if (elem.equals(target)) {
 return true;
 }
 }
 return false;
}
Code2vec

A neural network for learning distributed representations of code. This is an official implementation of the model described in:

Uri Alon, Marki Zilberstein, Omer Levy and Evan Yehua, "code2vec: Learning Distributed Representations of Code", POPL 2019 [PDF]
Summary

• Core ideas in learning code snippets:
 1. Representing a code snippet as a set of syntactic paths
 2. Aggregate all paths using neural attention
• A simple and fast to train architecture
• Interpretable thanks to the attention mechanism
• The learned vectors capture interesting phenomena

http://code2vec.org
How many paths do you take from each code snippet? Taking all paths is quadratic!

• An unlimited number!

• Since attention is simply a weighted average, it can handle an arbitrary number of path-contexts.

• Empirically, we found that sampling 200 from each code example is sufficient. ~200 is also the average number of paths per example.

• This number (200) can be easily increased if the dataset contained especially large pieces of code.

• Paths that are missed due to sampling are “covered” by other paths.
Why not performing additional control flow or data flow analyses?

• These might help, but we are not sure they are necessary here. Most of the important signals are expressed in the syntax.

• Our pure-syntactic approach has the advantage of generality – the same approach can be easily applied to other languages.

• Semantic analysis is probably necessary in other tasks (for example, when the programs are binaries).
How robust are the results for variable renaming?

• As any machine learning model, confusing or adversarial examples can mislead our model.

• Since the network was trained on “well-named” examples from top-starred GitHub projects, it does perform worse without names.

• We are exploring similar approaches for obfuscated code as part of ongoing research.
Do you keep vectors for all paths and tokens?

• Almost all!
 • Limiting to the most occurring 1M tokens, 1M paths, and 300k target labels.

• Each token and path vectors has 128 elements of 4 bytes (float32)
• Each target vector has 384 elements of 4 bytes
• Attention vector has 384 elements
• Fully connected layer is a matrix of size 384 × 384

• **Total size:** \(\frac{128 \cdot 4 \cdot (1M + 1M \text{ token+path vocab sizes})}{\text{vector}} + \frac{384 \cdot 4 \cdot 300k \text{ target vocab size}}{\text{vector}} + \frac{384}{\text{attention}} + \frac{384^2}{\text{fully-connected}} \approx 1.5 \text{ GB} \)

• **Standard GPU memory size:** 12 GB
Did you try Gated Graph NNs (Allamanis et al., ICLR’2018)?

• GGNNs were applied to a simpler task of Var-Misuse.
 • Their code is not fully available.

• Two conceptual advantages of code2vec over GGNNs:
 1. **Much faster to train** - thus practically easier to leverage huge corpora (our dataset is orders of magnitude larger).
 2. **Our model is purely syntactic** - the same algorithm can work for every programming language. In GGNNs, the edges in the graph are analyses like “ComputedFrom” and “LastWrite”, that need to be re-implemented for different languages.
Can a non-neural model solve the same task?

• Yes, and pretty well (PLDI’2018).
 • But not as good as a neural model.

• Main advantages of using a neural network:
 1. Much **better generalization** (Section 5 in the paper)
 2. Our neural network can **produce a vector**, which can be fed to a variety of other (neural and non-neural) ML models and tasks.