
A General Path-Based Representation
for Predicting Program Properties

Uri Alon
Technion

Haifa, Israel
urialon@cs.technion.ac.il

Meital Zilberstein
Technion

Haifa, Israel
mbs@cs.technion.ac.il

Omer Levy
University of Washington

Seattle, WA
omerlevy@cs.washington.edu

Eran Yahav
Technion

Haifa, Israel
yahave@cs.technion.ac.il

Abstract
Predicting program properties such as names or expression
types has a wide range of applications. It can ease the task
of programming, and increase programmer productivity. A
major challenge when learning from programs is how to
represent programs in a way that facilitates effective learning.
We present a general path-based representation for learn-

ing from programs. Our representation is purely syntactic
and extracted automatically. The main idea is to represent a
program using paths in its abstract syntax tree (AST). This
allows a learning model to leverage the structured nature of
code rather than treating it as a flat sequence of tokens.

We show that this representation is general and can: (i) cover
different prediction tasks, (ii) drive different learning algo-
rithms (for both generative and discriminative models), and
(iii) work across different programming languages.

We evaluate our approach on the tasks of predicting vari-
able names, method names, and full types. We use our repre-
sentation to drive both CRF-based and word2vec-based learn-
ing, for programs of four languages: JavaScript, Java, Python
and C#. Our evaluation shows that our approach obtains
better results than task-specific handcrafted representations
across different tasks and programming languages.

CCS Concepts • Software and its engineering → Gen-
eral programming languages; Automatic programming; •
Computing methodologies →Machine learning;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI’18, June 18–22, 2018, Philadelphia, PA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5698-5/18/06. . . $15.00
https://doi.org/10.1145/3192366.3192412

Keywords Programming Languages, Big Code, Machine
Learning, Learning Representations

ACM Reference Format:
Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2018. A
General Path-Based Representation for Predicting Program Proper-
ties. In Proceedings of 39th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI’18). ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3192366.3192412

1 Introduction
Leveraging machine learning models for predicting program
properties such as variable names, method names, and ex-
pression types is a topic of much recent interest [6, 7, 12, 30,
38, 40]. These techniques are based on learning a statistical
model from a large amount of code and using the model
to make predictions in new programs. A major challenge
in these techniques (and in many other machine-learning
problems) is how to represent instances of the input space to
facilitate learning [42]. Designing a program representation
that enables effective learning is a critical task that is often
done manually for each task and programming language.
Our approach We present a novel program representation
for learning from programs. Our approach uses different
path-based abstractions of the program’s abstract syntax
tree. This family of path-based representations is natural,
general, fully automatic, and works well across different
tasks and programming languages.
AST paths We define AST paths as paths between nodes
in a program’s abstract syntax tree (AST). To automatically
generate paths, we first parse the program to produce an
AST, and then extract paths between nodes in the tree. We
represent a path in the AST as a sequence of nodes connected
by up and down movements, and represent a program ele-
ment as the set of paths that its occurrences participate in.
Fig. 1a shows an example JavaScript program. Fig. 1b shows
its AST, and one of the extracted paths. The path from the
first occurrence of the variable d to its second occurrence
can be represented as:

SymbolRef ↑ UnaryPrefix! ↑While ↓ If ↓ Assign= ↓ SymbolRef

404

https://doi.org/10.1145/3192366.3192412
https://doi.org/10.1145/3192366.3192412

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav

while (!d) {

if (someCondition ()) {

d = true;

}

}

(a) A simple JavaScript program.

(b) The program’s AST, and example to an AST path.

Figure 1. A JavaScript program and its AST, along with an
example of one of the paths.

This is an example of a pairwise path between leaves in the
AST, but in general the family of path-based representations
contains n-wise paths, which do not necessarily span be-
tween leaves and do not necessarily contain all the nodes in
between. Specifically, we consider several choices of subsets
of this family in Section 4.
Using a path-based representation has several major ad-

vantages over existing methods:
1. Paths are generated automatically: there is no need

for manual design of features aiming to capture po-
tentially interesting relationships between program
elements. This approach extracts unexpectedly useful
paths, without the need for an expert to design fea-
tures. The user is required only to choose a subset of
our proposed family of path-based representations.

2. This representation is useful for any programming lan-
guage, without the need to identify common patterns
and nuances in each language.

3. The same representation is useful for a variety of pre-
diction tasks, by using it with off-the-shelf learning
algorithms or by simply replacing the representation
of program elements in existing models (as we show
in Section 5.3).

4. AST paths are purely syntactic, and do not require any
semantic analysis.

Tasks In this paper, we demonstrate the power and gener-
ality of AST paths on the following tasks:

• Predicting names for program elements Descrip-
tive and informative names for program elements such
as variables and classes play a significant role in the
readability and comprehensibility of code. Empirical
studies have shown that choosing appropriate names
makes code more understandable [44], reduces code

maintenance efforts, and leads to fewer bugs [13]. A
study in the Psychology of Programming suggests that
the ways in which programmers choose names reflect
deep cognitive and linguistic influences [28]. A mean-
ingful name describes the role of a program element,
carries its semantic meanings, and indicates its usage
and behavior throughout the program.

• Predicting method names Good method names ad-
equately balance the need to describe the internal im-
plementation of the method and its external usage [21].
When published in a popular library’s API, descriptive
and intuitive method names facilitate the use of meth-
ods and classes, while poorly chosen names can doom
a project to irrelevance [6]. Although method names
are clearly program elements and can be predicted by
the previous task, in this task we assumes that all the
other names in the method are given, along with the
names of the elements around the method invocation,
when available in the same file.

• Predicting expression types Statistical type predic-
tion allows (likely) types of expressions to be inferred
without the need for type inference, which often re-
quires a global program view (possibly unavailable,
e.g., in the case of snippets from sites such as Stack-
Overflow).

Raychev et al. [40] used relations in the AST as features
for learning tasks over programs. They defined an explicit
grammar to derive features which capture specific relation-
ships between nodes in the AST of JavaScript programs, as
well as relations produced by language-specific semantic
analysis, such as “may call” and “may access”. We show that
our automatic general representation performs better than
their features for their original task, and also generalizes to
drive two different learning algorithms and three different
prediction tasks, over different programming languages.
Paths in an AST have also been used by Bielik et al. [12]

and by Raychev et al. [38, 39] for a different goal: identifying
context nodes. These works do not use the paths themselves
as a representation of the input, and the prediction is only
affected by the context node that was found on the other
end of the path. In our work, we use the path itself as a rep-
resentation of a program element. Therefore, the prediction
depends not only on the context node but also on the way it
is related to the element in question.
Allamanis et al. [6] defined the challenging task of pre-

dicting method names, which can be viewed as a form of
function summarization [7]. We show that our representa-
tion performs better by being able to learn across projects.
We provide a more elaborate discussion of related work,

including deep learning approaches, in Section 6.
Contributions The main contributions of this paper are:

405

A General Path-Based Representation for Predicting Program Properties PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

Figure 2. An overview of our approach. We start with a code snippet C, and extract its path representation to be used as an
input to machine learning models. The AST and paths were extracted from the example program in Fig. 1a.

• A new, general family of representations for program
elements. The main idea is to use AST paths as repre-
sentations of code.

• A cross-language tool called Pigeon, which is an im-
plementation of our approach for predicting program
element names, method names, and types.

• An evaluation on real-world programs. Our experi-
ments show that our approach produces accurate re-
sults for different languages (JavaScript, Java, Python,
C#), tasks (predicting variable names, method names,
types) and learning algorithms (CRFs, word2vec). Fur-
thermore, for JavaScript and Java, where previousmeth-
ods exist, our automatic approach produces more ac-
curate results.

2 Overview
In this section, we illustrate our approach with a simple
JavaScript program for the task of predicting names; as we
show in later sections, the same approach also applies to
other tasks, other languages, and other learning algorithms.
Given a program with non-descriptive names, our goal

is to predict likely names for local variables and function
parameters. The non-descriptive names could have been
given by an inexperienced programmer, or could have been
the result of deliberate stripping. In the latter case, we refer to
such a program as a program with stripped names. Stripping
names can be part of a minification process in JavaScript, or
obfuscation in Java and other languages.
Consider the code snippet of Fig. 1a. This simple snippet

captures a common programming pattern inmany languages.
Suppose that we wish to find a better name for the variable
d.
Program element representation The main idea of our ap-
proach is to extract paths from the program’s AST and use

them to represent an element, such as the variable d, in a
machine learning model. Fig. 2 shows an overview of this
process. First, we parse the query program to construct an
AST. Then, we traverse the tree and extract paths between
AST nodes. To simplify presentation, in this example we only
consider pairwise paths between AST leaves. We assume that
a path is represented as a sequence of AST nodes, linked by
up and down movements (denoted by arrows). As we de-
scribe in Sec. 4, the path can also connect a leaf and a higher
nonterminal in the AST, connect several nodes (n-wise path),
and can be abstracted in different levels.

Consider the p1 in Fig. 2, between the two occurrences of
the variable d:

SymbolRef ↑ UnaryPrefix! ↑While ↓ If ↓ Assign= ↓ SymbolRef (I)

The path expresses the fact that the variable d is used, with
negation, as a stopping condition of a “while” loop, and then
assigned a new value if an “if” condition inside the loop
evaluates to true. This path alone expresses the fact that d
is the stopping condition of the loop.

The path p4 in Fig. 2, between the variable d and the value
true is:

SymbolRef ↑ Assign= ↓True (II)

This path captures the fact that the assignment changes the
value of d to true, and therefore it is indeed the assignment
that stops the loop.
Prediction By observing these two paths, a programmer
is likely to name d “done”, “complete”, “stop” or something
similar. Indeed, a learning model that was trained using
our representation predicts that the most likely name for
the variable is done, and neither “done”, “complete”, nor any
similar name was predicted by past work for this example.
Learning algorithms The learningmodel can vary between
different algorithms, presenting tradeoffs of efficiency and ac-
curacy. In Section 5.3 we show that both CRFs and word2vec

406

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav

var d = false;

while (!d) {

doSomething ();

if (someCondition ()) {

d = true;

}

}

(a)

someCondition ();

doSomething ();

var d = false;

d = true;

(b)

Figure 3. An example for two code snippets that are indis-
tinguishable by the model of Raychev et al. [40], and are
easily distinguishable by AST paths.

can be used for this prediction task. In both of these learning
algorithms, using AST paths produces better results than
the alternative representations, whether they are manually
designed or sequence-based representations.
Path abstractions Automatic generation may produce a
prohibitively large number of paths. To control the number
of paths, higher levels of abstraction can be used. Instead of
representing the whole path node-by-node, it can be further
abstracted by keeping only parts of it, which results in similar
paths being represented equally, as we show in Section 5.6.
Another way to control the number of paths is to limit the
number of extracted paths. We provide hyper-parameters
(i.e., model configurations that are not tuned by the optimiza-
tion process) that control the maximal length and width of
AST paths. The number of extracted paths can be further
reduced using downsampling, with minimal impact on ac-
curacy and a significant saving in training time (Sec. 5.3).
These methods make the accuracy – training time tradeoff
tunable.
The discriminative power of AST paths Examples indis-
tinguishable by manually designed representations will al-
ways exist. For example, UnuglifyJS [40] extracts an identical
set of relations (and therefore predicts the same name for
d) for the example in Fig. 3a and for the simplified example
in Fig. 3b, even though the variable d clearly does not play
a similar role in these two examples. In contrast, these two
examples are easily distinguishable using our AST paths.
Key aspects The example highlights several key aspects of
our approach:

• Useful paths such as path I span multiple lines of the
program, but are also supported by shorter paths like
path II, which only spans a single program line. Short
paths alone are not enough to predict a meaningful
name. Making a prediction using all paths that an el-
ement participates in provides a rich context for pre-
dicting the name of the element.

• No special assumptions regarding the AST or the pro-
gramming languageweremade,making the samemech-
anism useful in other languages in a similar way.

• This representation can be plugged into existing mod-
els as a richer representation of the input code, without
interfering with the learning algorithm itself.

• AST paths can distinguish between programs that pre-
vious works could not.

• In addition to predicting done, a model trained with
AST paths can propose several semantically similar
names, as we demonstrate in Sec. 5.3. This shows that
AST paths are strong indicators of the program ele-
ment’s semantics.

3 Background
In this section, we provide necessary background. In Sec-
tions 3.1 and 3.2 we present CRFs and word2vec and how
they are used to predict program properties.

3.1 Conditional Random Fields
Probabilistic graphical models are a formalism for expressing
the dependence structure of entities. Traditionally, graphical
models have been used to represent the joint probability
distribution P (y,x), where y represents an assignment of
attributes for the entities that we wish to predict, and x repre-
sents our observed knowledge about the entities [35, 36, 43].
Such models are called generative models. However, mod-
eling the joint distribution requires modeling the marginal
probability P (x), which can be difficult, computationally
expensive, and in our case requires us to estimate the distri-
bution of programs [40].
A simpler solution is to model the conditional distribu-

tion P (y |x) directly. Such models are called discriminative
models. This is the approach taken by Conditional Random
Fields (CRFs). A CRF is a conditional distribution P (y |x)
with an associated graphical structure [25]. They have been
used in several fields such as natural language processing,
bioinformatics, and computer vision.

Formally, given a variable set Y and a collection of subsets
{Ya}

A
a=1 of Y , an undirected graphical model is the set of all

distributions that can be written as:

P (y) =
1
Z

A∏
a=1

Ψa (ya) (1)

where each Ψa (ya) represents a factor. Each factor Ψa (ya)
depends only on a subset Ya ⊆ Y of the variables. Its value is
a non-negative scalar which can be thought of as a measure
of how compatible the values ya are. The constant Z is a
normalization factor, also known as a partition function, that
ensures that the distribution sums to 1. It is defined as:

Z =
∑
y

A∏
a=1

Ψa (ya) (2)

A CRF can also be represented as a bipartite undirected
graphG = (V , F ,E), inwhich one set of nodesV = {1, 2, ..., |Y |}

407

A General Path-Based Representation for Predicting Program Properties PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

represents indices of random variables, and the other set of
nodes F = {1, 2, ...,A} represents indices of the factors.

Several algorithms and heuristics were suggested for train-
ing CRFs and finding the assignment that yields the maximal
probability [24, 25, 43]. We will not focus on them here, since
our work is orthogonal to the learning model and the pre-
diction algorithm.
Using CRFs to predict program properties was first pro-

posed by Raychev et al. [40], where each node represented
an identifier in the code. These include variables, constants,
function and property names. The factors represented the
relationships or dependencies between those identifiers, and
were defined by an explicit grammar and relations that were
produced using semantic analysis.
To demonstrate the use of AST paths with CRFs, we use

CRFs exactly as they were used by Raychev et al. [40] but use
AST paths instead of their original factors. Additionally, we
introduce the use of unary factors (factors that depend on a
single node). Unary factors are derived automatically by AST
paths between different occurrences of the same program
element throughout the program.

3.2 Neural Word Embeddings
Recently, neural-network based approaches have shown that
syntactic and semantic properties of natural language words
can be captured using low-dimensional vector representa-
tions, referred to as “word embeddings”, such that similar
words are assigned similar vectors [10, 14, 37]. These repre-
sentations are trained over large swaths of unlabeled text,
such as Wikipedia or newswire corpora, and are essentially
unsupervised. The produced vectors were shown to be effec-
tive for various NLP tasks [15, 45].

In particular, the skip-gram model trained with the nega-
tive sampling objective (SGNS), introduced by Mikolov et al.
[32, 33], has gained immense popularity via the word2vec
toolkit, and substantially outperformed previous models
while being efficient to train.

SGNS works by first extracting the contexts: c1, ..., cn of
eachwordw . It then learns a latentd-dimensional representa-
tion for each word and context in the vocabulary (®w, ®c ∈ Rd)
by maximizing the similarity of each wordw and context c
that were observed together, while minimizing the similarity
ofw with a randomly sampled context c ′. In Mikolov et al.’s
original implementation, each context ci is a neighbor of
w , i.e., a word that appeared within a fixed-length window
of tokens from w . Levy and Goldberg [26] extended this
definition to include arbitrary types of contexts.
As shown by Levy and Goldberg [27], this algorithm im-

plicitly tries to encode the pointwise mutual information
(PMI) between each word and context via their vector repre-
sentations’ inner products:

®w · ®c = PMI (w, c) = log
p(w, c)

p(w)p(c)
(3)

where each probability term models the frequency of observ-
ing a wordw and a context c together (or independently) in
the training corpus.

Recently, a simplemodel has achieved near state-of-the-art
results for the lexical substitution task using embeddings that
were learned by word2vec [31]. The task requires identifying
meaning-preserving substitutes for a target word in a given
sentential context. The model in this work uses both word
embeddings and context embeddings, and looks for a word
out of the entire vocabulary whose embedding is the closest
to all the given context embeddings and to the original word.
The similarities between the substitute word and each of
the contexts and the original word are aggregated by an
arithmetic mean or a geometric mean.

In contrast to natural language methods, our method does
not use the original word but finds the unknown name by ag-
gregating only the similarities between the candidate vector
w and each of the given context vectors C̃:

prediction = arдmaxw ∈W

∑
c ∈C̃

(w · c) (4)

To demonstrate the use of AST paths with word2vec, we
use AST paths as the context of prediction. As we show
in Section 5.3, using AST paths as context gives a relative
improvement of 96% over treating code as a token-stream
and using the surrounding tokens as context.

4 AST Paths Representation
In this section, we formally describe the family of AST paths.

4.1 AST Paths
To learn from programs, we are looking for a representation
that captures interesting properties of ASTs while keeping it
open for generalization. One way to obtain such a represen-
tation is to decompose the AST to parts that repeat across
programs but can also discriminate between different pro-
grams. One such decomposition is into paths between nodes
in the AST. We note that in general we consider n-wise paths,
i.e., those that have more than two ends, but for simplicity
we base the following definitions on pairwise paths between
AST terminals.

We start by defining an AST, an AST-path, a path-context
and an abstract path-context.

Definition 4.1 (Abstract Syntax Tree). An Abstract Syntax
Tree (AST) for a code snippet C is a tuple ⟨N ,T ,X , s,δ ,val⟩
where N is a set of nonterminal nodes, T is a set of terminal
nodes, X is a set of terminal values, s ∈ N is the root node,
δ : N → (N ∪T)∗ is a function that maps a nonterminal
node to a list of its children, and val : T → X is a function
that maps a terminal node to an associated value. Every
node except the root appears exactly once in all the lists of
children.

408

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav

var item = array[i];

(a) (b)

Figure 4. A JavaScript statement and its partial AST.

For convenience, we also define π : (N ∪T) → N , the
inverse function for δ . Given a node, this function returns its
parent node, such that for every two terminal or nonterminal
nodes y1,y2 ∈ (N ∪T), one is the parent node of the other if
and only if the latter is in the list of children of the former:
π (y1) = y2 ⇐⇒ y1 ∈ δ (y2). In the case of the start symbol,
its parent is undefined.
Next, we define AST pairwise paths. For convenience, in

the rest of this section we assume that all definitions refer
to a single AST ⟨N ,T ,X , s,δ ,val⟩.

An AST pairwise path is a path between two nodes in the
AST, formally defined as follows:

Definition 4.2 (AST path). An AST-path of length k is a
sequence n1d1...nkdknk+1, where for i ∈ [1..k + 1]: ni ∈

(N ∪T) are terminals or nonterminals and for i ∈ [1..k]:
di ∈ {↑,↓} are movement directions (either up or down
in the tree). If di =↑, then: ni+1 = π (ni); if di =↓, then:
ni = π (ni+1). We use start (p) to denote n1 and end (p) to
denote nk+1.

We define a path-context as a tuple of an AST path and
the values associated with its end nodes: (i.e. n1 and nk+1).
In general, we consider path-contexts which span between
arbitrary AST nodes, e.g., a terminal and its ancestor, but for
simplicity, we base the following definitions on path-contexts
which span between terminals:

Definition 4.3 (Path-context). Given an AST Path p, its
path-context is the triplet ⟨xs ,p,xf ⟩wherexs = val (start (p))
and xf = val (end (p)) are the values associated with the start
and end nodes of p.

That is, a path-context describes two nodes from the AST
with the syntactic path between them.

Finally, we define an Abstract path-context as an abstrac-
tion of concrete path context:

Definition 4.4 (Abstract path-context). Given a path-context
⟨xs ,p,xf ⟩ and an abstraction function α : P → P̂ , an abstract
path-context is the triplet ⟨xs ,α (p) ,xf ⟩, where P is the set
of AST paths, P̂ is the set of abstract AST paths, and α is a
function that maps a path to an abstract representation of it.

The abstraction function α is any function that transforms
a path to a different representation. A trivial abstraction
function is αid , which maps a path to itself: αid (p) = p.

Example 4.5. For example, consider the JavaScript line of
code in Fig. 4a and its partial AST in Fig. 4b. We denote the

var a, b, c, d;

Figure 5. An example statement and its AST, with an exam-
ple of a path between the SymbolVar terminals that represent
a and d. The length of this path is 4, and its width is 3.

path between the variable item to the variable array by p.
Using αid , the abstract path-context of p is:
⟨item,αid (p) , array⟩ = (5)
⟨item, (SymbolVar ↑ VarDe f ↓ Sub ↓ SymbolRe f) , array⟩

(6)
Using a different abstraction function yields a different ab-
stract path-context, for example αf orдet−arrows :
⟨item,αf orдet−arrows (p) , array⟩ = (7)
⟨item, (SymbolVar ,VarDe f , Sub, SymbolRe f) , array⟩

(8)

Naïvely extracting all the paths in the AST and represent-
ing each of them uniquely can be computationally infeasible,
and as a result of the bias-variance tradeoff [19, p. 37 and
219], can lead to worse prediction results. However, alterna-
tive abstraction functions can be used to control the number
of distinct extracted paths. In Section 5.6 we describe alter-
native abstractions that abstract some of the information,
and thus allow us to tune the trade-off between accuracy,
training time, and model size.

4.2 Limiting the Number of Paths
Another approach for controlling the number of distinct
paths is to limit the number of extracted paths.
Path length and width We define hyper-parameters that
limit the path length and width. We define the following
hyper-parameters:

• max_lenдth, defined as the maximal length of a path,
i.e., the maximum value of k .

• max_width, defined as the maximal allowed difference
between sibling nodes that participate in the same path,
as shown in Fig. 5.

When limiting these parameters to certain values, we do not
extract longer or wider paths. We tune the optimal values of
width and length by grid search of combinations on a valida-
tion set of programs and choose the combination that yields
the highest accuracy, as described in Section 5. The tuning
process of finding the optimal parameter values should be
separate for each language and task.

Obviously, setting the values of these parameters to a value
that is too low limits the expressiveness of the paths, does not
capture enough context for each element, limits the ability
to model the training and test data, and therefore produces

409

A General Path-Based Representation for Predicting Program Properties PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

assert.equal(a,1);

assert.equal (...);

...

assert.equal(b,1);

Figure 6. An example of a typical program where the max-
imal path length is relatively small, but the width can be
large.

poor accuracy. Why, then, does limiting the path length and
width actually improve accuracy? There are several reasons:

• Locality The role of a program element is affected
mostly by its surroundings. For example, consider the
program in Fig. 6. The width of a path that connects
the variable a in the first line to the variable b in the last
line is as large as the number of lines in the program.
Usually, the names of a and b can be predicted by con-
sidering elements within a closer distance. Therefore,
using paths between too distant elements can cause
noise and pollute the relevant information.

• Sparsity Using paths that are too long can cause the
representation space to be too sparse. A long path
might appear too few times (or even only once) in
the training set and cause the model to predict spe-
cific labels with high probability. This phenomenon is
known as overfitting, where the learned AST paths are
very specific to the training data and the model fails
to generalize to new, unseen data.

• Performance There is a practical limit on the amount
of data that a model can be trained on. Too much
data can cause the training phase to become infeasibly
long. There is a tradeoff between how many programs
the model can be trained on, and how many paths
are extracted from each program. Therefore, it makes
sense to limit the number of extracted paths from each
program by limiting the paths’ length and width, in
order to be able to train on a larger and more varied
training set.

In fact, tuning path length and width is used to control
the bias-variance tradeoff. Shorter paths increase the bias
error, while longer paths increase the variance error. The re-
lationship between these parameters and results is discussed
and demonstrated in Section 5.5.

5 Evaluation
Since the goal of this work is to provide a representation of
program elements, we compared the effect of different rep-
resentations on the accuracy of the learning algorithms. To
show that our approach can be applied to the representa-
tion of the input without modifying the learning algorithm,
we used off-the-shelf learning algorithms but represented
the input in each experiment using a different representation
(when possible).

Our evaluation aims to answer the following questions:

• How useful are AST paths compared to existing repre-
sentations? (Section 5.3)

• How useful are AST paths across different program-
ming languages, tasks and learning algorithms? (Sec-
tion 5.3)

• Do AST paths just memorize the input, or do they
capture deeper semantic regularities? (Section 5.4)

• How long are the useful paths? How do the paths’
length and width affect the results? (Section 5.5)

• How important is the concrete representation of paths?
Which abstractions can be used to represent paths
without reducing accuracy? (Section 5.6)

Leafwise and semi-paths Although the family of represen-
tations in this work includes n-wise paths and paths between
any kind of AST nodes, for simplicity and feasible training
time, we performed most of the experiments using leafwise-
paths (paths between AST terminals) and semi-paths — paths
between an AST terminal and one of its ancestor nodes in
the AST. The idea is that leafwise-paths are more diverse and
therefore more expressive than semi-paths, but semi-paths
provide more generalization. Semi-paths allow us to gen-
eralize learning and capture common patterns in different
programs, even if the full path does not recur.
An exception is the prediction of full types in Java, in

which we predict types of expressions which are not nec-
essarily terminals. In this case, we also used paths between
terminals to the nonterminal in question.

5.1 Prototype Implementation
We implemented a cross-language tool called Pigeon. The
tool consists of separate modules that parse and traverse the
AST of a program in each different language, but the main
algorithm is the same across all languages. Currently Pigeon
contains modules for Java, JavaScript, Python and C#, and it
can be easily extended to any other language.
AST construction andpath extraction For Javawe used Java-
Parser; for JavaScript we usedUglifyJS for parsing and travers-
ing the AST, along with additional modifications from Un-
uglifyJS; for Python we used the Python internal parser and
AST visitor; and for C# we used Roslyn.
Learning algorithms We experiment with two learning
algorithms: Conditional Random Fields, based on the im-
plementation of Nice2Predict [40], and the word2vec based
implementation of Levy and Goldberg [26].

To support our representation in the learning engine side
and produce a qualitative evaluation, we introduced minor
extensions to the Nice2Predict framework:

• Support unary factors. Previously, Nice2Predict sup-
ported only pairwise feature functions, and we imple-
mented support for unary factors to express the re-
lationship between different occurrences of the same
identifier. Note that this is required because different

410

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav

AST nodes for the same identifier are merged into a
single node in the CRF. Hence, a path between these
nodes in the AST becomes a unary-factor in the CRF.
This extension increases accuracy by about 1.5%.

• Top-k candidates suggestion. CRFs output a single pre-
diction for each program element. We implemented an
additional API that receives a parameterk and suggests
the top-k candidate names for each program element
(this extension was adopted into Nice2Predict). This al-
lowed us to manually investigate the quality of results
(Section 5.4). When all top-k predictions for a vari-
able name captured similar notions, it increased our
confidence that the model performs stable predictions.

5.2 Experimental Setting

Data sets For each language, we collected source code from
public GitHub projects, and split it randomly to training,
validation and test sets. Our data included the top ranked
projects of each language and the projects that were forked
the most. Table 1 shows the amount of data used for each
language. Java required an order of magnitude more data
than the other languages: we had to keep enlarging our
Java dataset to achieve results that were close to the other
languages.
Following recent work which found a large amount of

code duplication in GitHub [29], we devoted much effort
into filtering duplicates from our dataset, and especially the
JavaScript dataset. To filter duplicates, we used file names,
directory names (such as “node_modules”), and md5 of files.
In Java and Python, which do not commit dependencies,
duplication is less severe (as also observed by Lopes et al.
[29]). Furthermore, in our setting, we took the top-ranked
and most popular projects, in which we observed duplication
to be less of a problem (Lopes et al. [29] measured duplication
across all the code in GitHub).
Evaluationmetric For simplicity, in all the experiments we
measured the percentage of exact match predictions, case-
insensitive and ignoring differences in non-alphabetical char-
acters. For example, this metric considers totalCount as an
exact match to total_count. An exception is the comparison
to Allamanis et al. [7], who optimized their Java method
name prediction model to maximize the F1 score over sub-
tokens. In this case, we compared their model with ours
on both exact match and F1 score. An unknown test label
(“UNK”) was always counted as an incorrect prediction, or
as a possibly partial prediction when using the F1 score, and
our model never suggests “UNK”. For example, if the true
test label is get<UNK>, our model could get partial precision
and partial recall for predicting getFoo.

Table 1. The amounts of data used for the experimental
evaluation of each language.

Total Training Set Test set
Language repos File Size (GB) File Size (MB)

Java 10, 081 1, 717, 016 16 50, 000 1001
JavaScript 6, 863 159, 038 3.4 38, 103 130
Python 8, 565 458, 771 5.4 39, 941 588
C# 1, 000 262, 774 4.7 50, 000 1208

5.3 Quantitative Evaluation
We conducted several experiments to evaluate the usefulness
of AST paths in different tasks and programming languages.
We performed the following quantitative experiments:

• Prediction of variable names across all four languages.
Variable names have sufficient training data in all
languages to produce meaningful results. In this ex-
periment we used both CRFs and word2vec. As base-
lines we used the work of Raychev et al. [40], CRFs
with token-based n-grams as factors, and a simple
rule-based baseline. For JavaScript with word2vec, we
used word2vec with linear token context as a base-
line and show that path representations yield dramatic
improvement.

• Prediction of method names across JavaScript, Java and
Python.We compared our general approach formethod
name prediction with Allamanis et al. [7], who used a
convolutional neural network with attention.

• Prediction of full types in Java. For Java, we compared
our results to a synthetic (straw-man) baseline that
predicts all types to be java.lang.String. This baseline
shows that despite the prevalence of the String type,
the task of type prediction is still very challenging.

In all of the following CRF experimental setups, “no-path”
refers to a “bag-of-words” baseline, in which we used the
same CRF learning algorithm, but used a single symbol to
represent all relations. In this baseline, path information
was hidden from the model during training and testing, and
therefore it always assigned the same likelihood for each
specific pair of identifiers, regardless of the syntactic relation
between them. This baseline can be seen as a “bag of near
identifiers” that uses the neighbors’ names without their
syntactic relation and therefore without considering the way
program elements are related.

5.3.1 Predicting Variable Names
To predict variable names, we used both CRFs and word2vec.
Evaluation with CRFs We present our evaluation results
with CRFs for names in the top part of Table 2. For JavaScript,
where a tool that uses predefined features exists, we evalu-
ated the other tool with the exact same datasets and settings,
and the same AST terminals as CRF nodes, which makes
the input representation (AST paths vs. their features) the

411

A General Path-Based Representation for Predicting Program Properties PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

Table 2. Accuracy comparison for variable name prediction, method name prediction, and full type prediction using CRFs.

Task Previous works AST Paths (this work) Params (length/width)

Variable name prediction
JavaScript 24.9% (no-paths) 60.0% (UnuglifyJS) 67.3% 7/3
Java 23.7% (rule-based) 50.1% (CRFs+4-grams) 58.2% 6/3
Python 35.2% (no-paths) 56.7% (top-7) 7/4
C# 56.1% 7/4

Method name prediction
JavaScript 44.1% (no-paths) 53.1% 12/4
Java 16.5%, F1: 33.9 (Allamanis et al. [7]) 47.3%, F1: 49.9 6/2
Python 41.6% (no-paths) 51.1% (top-7) 10/6

Full type prediction
Java 24.1% (naïve baseline) 69.1% 4/1

Table 3. Accuracy comparison for the variable name predic-
tion task that was evaluated using word2vec in JavaScript.

Model Names Accuracy

linear token-stream + word2vec 20.6%
path-neighbors, no-paths + word2vec 23.2%
AST Paths (this work) + word2vec 40.4%

only difference between the two experiments. Using our rep-
resentations yields 7.6% higher accuracy than the previous
work.

For Java, we compared the results with two baselines:

• CRFs + n-grams - this baseline uses the same CRF
nodes as the path-based model, except that the rela-
tions between them are the sequential n-grams. We
chose n = 4 as the value that maximizes accuracy on
the validation set, such that the produced model con-
sumes approximately the same amount of memory and
disk as the path-based model.

• Rule-based - Since Java is a typed language which has
a rich type system, and typical code tends to use a lot
of classes and interfaces, we wonder whether the task
of predicting variable names is easier in Java than in
other languages and can be solved using traditional
rule-based (non-learning) approaches. Our rule-based
baseline predicts variable names based on the follow-
ing pattern heuristics and statistics of the training
corpus:
– for(int i = ...) {

– this.<fieldName> = <fieldName>;

– catch (... e) {

– void set<fieldName>(... <fieldName>) {

– Otherwise: use the type: HttpClient client.

As shown, using CRFswith AST paths yields higher results
than the baselines, in all the languages, showing that our
representation yields higher results than manually defined
features, n-grams, and rule-based approaches.

Evaluation with word2vec We present our evaluation re-
sults with a word2vec based implementation in Table 3. For
comparison, we use two alternative approaches to represent
the context for prediction:

• The linear token-stream approach uses the surrounding
tokens to predict a variable name. Surrounding tokens
(e.g., values, keywords, parentheses, dots and brackets)
may implicitly hint at the syntactic relations, without
AST paths. This is the type of context usually used in
NLP, in the original implementation of word2vec, and
in many works in programming languages.

• The path-neighbors, no-paths approach uses the same
surrounding AST nodes for contexts as AST paths, ex-
cept that the path itself is hidden, and only the identity
of the surrounding AST nodes is used. The goal of
using this baseline is to show that the advantage of
AST paths over token-stream is not only in their wider
span, but in the representation of the path itself.

Using word2vec with AST paths produces much better
results compared to these baselines. This shows the advan-
tage of using AST paths as context over token-stream based
contexts, and the significance of using a representation of
the paths for prediction.
Limitations of evaluation We noticed that our models of-
ten predict names that are very similar but not identical to
the original name, such as message instead of msg, or syn-
onyms such as complete instead of done; these are counted
as incorrect predictions. Moreover, we noticed that our mod-
els sometimes predict better names than the original names.
Therefore, the accuracy results are an underapproximation
of the ability of AST paths to predict meaningful names.

Another limitation lies in the inability of CRFs andword2vec
to predict out-of-vocabulary (OoV) names. As was previously
observed [6, 7], there are two main types of OoV names in
programs: names that did not appear in the training corpus
but can be composed of known names (neologisms), and
entirely new names. The total OoV rate among our various

412

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav

datasets and tasks varied between 5 − 15%, and specifically
7% for predicting variable names in JavaScript, and 13% for
Java method names. Several techniques were suggested to
deal with each type of OoV [6, 7], which we did not consider
here and are out of scope of this work.
Discussion We note that the accuracy for Java is lower
than for JavaScript. We have a few possible explanations:
(i) The JavaScript training set contains projects that are
rather domain specific, mostly client and server code for
web systems (for example, the terms request and response

are widely used across all projects). In contrast, the Java code
is much more varied in terms of domains. (ii) The Java nam-
ing scheme makes extensive use of compound names (e.g.,
multithreadedHttpConnectionManager), and this is amplified
by the type-based name suggestions for variables provided
by modern Java IDEs. In contrast, the JavaScript variable
names are typically shorter and are not an amalgamation
of multiple words (e.g., value, name, elem, data are frequent
names).
The accuracy of C# is similar to Java, but using signifi-

cantly less training data. We believe that C# naming is more
structured because the commonly used C# IDE (VisualStu-
dio), suggests variable names based on their types.
The accuracy for Python is lower than that of JavaScript.

Manual examination of the training data shows that Python
programs vary widely in code quality, making the training
set more noisy than that of other languages. In addition,
the variety of domains and IDEs for Python makes variable
names less standard. Finally, Python is easy to write, even
for non-programmers, and thus there is a wide variety of
non-professional Python code. The low accuracy for Python
is also consistent with Raychev et al. [38].
Comparison of CRFs and word2vec We observe that the
accuracy of Pigeon + CRFs is higher than that of Pigeon +
word2vec, as can be seen in Table 2. One reason is that, unlike
CRFs, word2vec was not designed exactly for this prediction
task. Originally, word2vec was intended to produce mean-
ingful word embeddings: given a set of query path-contexts,
the vectors of all of them are assigned the same weight for
predicting the unknown value.
Moreover, CRFs are relatively more interpretable. The

weights assigned to each factor can be observed and explain
a prediction posteriori. However, word2vec was faster to
train and much more memory efficient. In our evaluation,
the memory required for training was over 200GB for CRFs
and only 10GB with word2vec. Further, the training time of
CRFs was up to 100 hours, where word2vec required at most
5 hours.

The goal here is not to provide a fair comparison between
CRFs and word2vec, as their prediction tasks are slightly dif-
ferent; our observations in this regard are merely anecdotal.
The main goal is to compare different representations for the
same learning algorithm and show that each of the learning

algorithms separately can be improved by plugging in our
simple representation.

5.3.2 Predicting Method Names
We present our evaluation results for predicting method
names in Table 2. Accuracy was similar for all languages
(∼ 50%).

Goodmethod names balance the need to describe the inter-
nal implementation of the method and its external usage [21].
For predicting method names, we use mostly the paths from
within a method to its name, but when available in the same
file, we also use paths from invocations of the method to the
method name. Ideally, one would use paths from different
files (and for library methods, even across projects), but this
requires a non-local view, which we would like to avoid for
efficiency reasons.
We use the internal paths from the leaf that represents

the method name to other leaves within the method AST
(which capture the method implementation) and the external
paths from references of the method to their surrounding
leaves (which represent the usage of the method). However,
we observed that using only internal paths yields only 1%
lower accuracy.

In Java, CRFs with AST paths are compared to the model
of Allamanis et al. [7], which we trained on the same training
corpus. Since their model is optimized to maximize the F1
score over sub-tokens, Table 2 presents both exact accuracy
and F1 score for method name prediction in Java. The table
shows that CRFs with AST paths significantly improve over
the previous work in both metrics.

5.3.3 Predicting Full Types
Our results for predicting full types in Java using CRFs
are shown in the bottom part of Table 2. Our goal is
to predict the full type even when it explicitly appears
in the code (e.g., com.mysql.jdbc.Connection, rather than
org.apache.http.Connection). Here we also use paths from
leaves to nonterminals which represent expressions. The
evaluated types were only those that could be solved by a
global type inference engine. Therefore, accuracy is the per-
cent of correct predictions out of the results that are given
by type inference.
Although a type inference engine still produces more ac-

curate results than our learning approach, our results using
AST paths are surprisingly good, especially considering the
relative simplicity of our representation. We also note that
type inference is a global task, and our approach reconstructs
types locally without considering the global scope of the
project.

CRFs with AST paths achieved 69.1% accuracy when pre-
dicting full type for Java. We contrast this result with a naïve
baseline that uniformly predicts the type java.lang.String

for all expressions. This naive baseline yields an accuracy

413

A General Path-Based Representation for Predicting Program Properties PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

Stripped names AST paths + CRFs
def sh3(c):

p = Popen(c, stdout=PIPE ,

stderr=PIPE , shell=True)

o, e = p.communicate ()
r = p.returncode
if r:

raise CalledProcessError(r, c)
else:

return o.rstrip (), e.rstrip ()

def sh3(cmd):
process = Popen(cmd , stdout=PIPE ,

stderr=PIPE , shell=True)

out , err = process.communicate ()
retcode = process.returncode
if retcode:

raise CalledProcessError(retcode , cmd)
else:

return out.rstrip (), err.rstrip ()

Figure 7. Example of a Python program with stripped names and with predictions produced using our AST paths.

Stripped Names AST Paths + CRFs nice2predict.org
function f(a, b, c) {

b.open('GET', a, false);

b.send(c);
}

function f(url, request, callback) {

request.open('GET', url, false);

request.send(callback);
}

function f(source, req, n) {

req.open("GET", source, false);

req.send(n);
}

Figure 8. Example of a JavaScript program with stripped names, with predictions produced using our AST paths and an online
version of UnuglifyJS at nice2predict.org. This is the default example shown at nice2predict.org.

Stripped names AST paths + CRFs
boolean d = false;

while (!d) {

if (someCondition ()) {

d = true;

}

}

boolean done = false;

while (!done) {

if (someCondition ()) {

done = true;

}

}

int count(List <Integer > x, int t) {

int c = 0;

for (int r: x) {

if (r == t) {

c++;
}

}

return c;
}

int count(List <Integer > values, int value) {

int count = 0;

for (int v: values) {

if (v == value) {

count++;
}

}

return count;
}

Figure 9. Examples of Java programs with stripped names and with predictions produced using our AST paths. We deliberately
selected challenging examples in which the prediction cannot be aided by specific classes and interfaces.

of 24.1%, which shows the task is nontrivial, even when
factoring out the most commonly used Java type.

5.4 Qualitative Evaluation
Our qualitative evaluation includes:

• An anecdotal study of name prediction in different
languages. For JavaScript we also compared our pre-
dictions to those of Raychev et al. [40] in interesting
cases.

• An anecdotal study of top-k predictions for some exam-
ples, showing semantic similarities between predicted
names as captured by the trained model.

5.4.1 Prediction Examples
Fig. 7 shows an example of a Python program predicted using
AST paths. It can be seen that all the names predicted using

AST paths were renamed with meaningful names such as
process, cmd and retcode.
Fig. 8 shows the default JavaScript example from

nice2predict.org, predicted using AST paths and an online
version of UnuglifyJS at nice2predict.org. We note that their
online model was not trained on the same dataset as our
model. The model which was trained using UnuglifyJS and
our dataset yielded worse results. It can be seen that our
model produced more meaningful names such as url (in-
stead of source) and callback (instead of n).
Fig. 9 shows examples of Java programs. To demonstrate

the expressiveness of AST paths, we deliberately selected
challenging examples in which the prediction cannot be
aided by the informative class and interface names that Java
code usually contains (as in: HttpClient client). Instead,

414

nice2predict.org

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav

Table 4. Semantic similarities between names.

(a) Candidates for prediction of the variable d
from the example program of Fig. 1a.

Candidate

1. done
2. ended
3. complete
4. found
5. finished
6. stop
7. end
8. success

(b) Examples of semantic similarities between
names found among the top-10 candidates.

Semantic Similarities

req ∼ request ∼ client
items ∼ values ∼ objects ∼ keys ∼ elements
array ∼ arr ∼ ary ∼ list
item ∼ value ∼ key ∼ target
element ∼ elem ∼ el
count ∼ counter ∼ total
res ∼ result ∼ ret
i ∼ j ∼ index

our model had to leverage the syntactic structure to predict
the meaningful names: done, values, value and count.

5.4.2 Semantic Similarity between Names
It is interesting to observe the other candidates that our
trained model produces for program elements. As Table 4a
shows, the next candidates after done (in Fig. 1a) are: ended,
complete, found, finished, stop and end, which are all se-
mantically similar (in programs, not necessarily in natural
language). In many cases, AST paths capture the seman-
tic similarity between names, for example req∼request and
list∼array, as shown in Table 4b. This supports our hypoth-
esis that AST paths capture the semantic role of a program
element.

5.5 Impact of Parameter Values
In Section 4 we introduced and discussed the importance of
themax_lenдth andmax_width parameters. For each lan-
guage we experimented with different combinations of val-
ues for max_lenдth and max_width on its validation set.
We chose the values that produced the highest accuracy
while still being computationally feasible when evaluating
the model with the test set.
Accuracy with different path length and width We ex-
perimented with tuning the path parameters and observed
their effect on the accuracy. The best parameter values for
each prediction are shown in Table 2.

3 4 5 6 7
50

52

54

56

58

60

62

64

66

68

Max path length value

A
cc
ur
ac
y
(%
)

AST Paths withmax_width =3
AST Paths withmax_width =2
AST Paths withmax_width =1
UnuglifyJS (Raychev et al. [40])

Figure 10. Accuracy results of AST paths with CRFs, for the
task of variable naming in JavaScript, for different combi-
nation values ofmax_lenдth andmax_width (UnuglifyJS is
presented here for comparison).

For the task of name prediction, for all languages, the best
path length is 6-7, and the best width is 3-4. The variations in
path length stem from minor differences in the structure of
the AST. For example, despite the similarity in source level
between Java and C#, the C# AST is slightly more elaborate
than the one we used for Java.
A drill-down of the accuracy given different parameter

values for variable name prediction in JavaScript is shown
in Fig. 10. We observe that themax_lenдth parameter has a
significant positive effect, while the contribution of a larger
max_width is positive but minor. This observation affirms
our initial hypothesis that our long-distance paths are fun-
damental and crucial to the accuracy of the prediction. It
also confirms our belief that an automatic representation of
code (rather than manually defined) is essential, since the
long-distance paths are very unlikely to have been designed
manually.
For the task of method name prediction, since there are

significantly fewer paths, we could afford to set a high pa-
rameter value without too much tuning and still keep the
training time and resources feasible. We therefore set the
length in this case to 12 for JavaScript, 10 for Python, and
just 6 for Java.

For the task of predicting full types in Java, we used length
4 and width 1, which yielded an accuracy of 69.1%. The
intuition for the short path length is that in many cases
the type of an expression can be inferred locally from other
neighboring types, often from an explicit type declaration.
Higher values for max_lenдth and max_width resulted

in higher training times, but combined with the downsam-
pling approach, it is possible to maintain a shorter training

415

A General Path-Based Representation for Predicting Program Properties PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
59

60

61

62

63

64

65

66

67

68

Probability of keeping a path occurrence

A
cc
ur
ac
y
(%
)

Pigeon + CRFs
UnuglifyJS (Raychev et al. [40])

Figure 11. Downsampling: accuracy results of AST paths
with CRFs, for the task of variable naming in JavaScript, for
different values of p - the probability of keeping an AST path
occurrence. UnuglifyJS was evaluated with all the training
data and is presented here for comparison.

time while increasing the parameter values, and control the
tradeoff between accuracy and training time.
DownsamplingWewanted to measure the effect of training
data size on accuracy and training time. Inspired by Grover
and Leskovec [18], who used random walks to learn rep-
resentations for neighborhoods of nodes in a network, we
experimented with randomly omitting a fraction of the ex-
tracted path-contexts. After extracting path-contexts from
all the programs in the training set, we randomly omitted
each occurrence of a path-context in probability of 1−p (i.e.,
p is the probability to keep it) and trained a model only on
the remaining paths. As can be seen in Fig. 11, randomly
dropping contexts can significantly reduce training time,
with a minimal effect on accuracy. For example, for p = 0.8
we observed exactly the same accuracy as for the complete
set of paths (p = 1), while training time was reduced by
about 25%. Moreover, decreasing p down to 0.2 still yielded
higher accuracy than UnuglifyJS but reduced training time
by about 80% (compared to p = 1.0).

5.6 Abstractions of AST Paths
In order to evaluate the full expressiveness of AST paths,
the previously reported experiments were performed using
no abstraction, i.e. αid . However, it is also possible to use a
higher level of abstraction. Instead of representing the whole
path node-by-node with separating up and down arrows, it
is possible to keep only parts of this representation. This
abstraction results in less expressive paths and might repre-
sent two different paths as equal, but it enables decreasing

the number of distinct paths, thus reducing the number of
model parameters. Training will be faster as a result.

Different levels of path abstractions also allow us to evalu-
ate the importance of different components of AST paths, or
which components of AST paths contribute to their usefulness
the most. We experimented with several levels of abstraction:

• “No-arrows” - using the full path encoding, except the
up and down symbols {↑,↓}.

• “Forget-order” - using paths without arrows and with-
out order between the nodes: instead of treating a path
as a sequence of nodes, treat it as a bag of nodes.

• “First-top-last” - keeping only the first, top and last
nodes of the path. The “top” node refers to the node
that is hierarchically the highest, from which the direc-
tion of the path changes from upwards to downwards.

• “First-last” - keeping only the first and last nodes.
• “Top” - keeping only the top node.
• “No-paths” - using no paths at all, and treating all re-
lations between program elements as the same. The
name of an element is predicted by using the bag of sur-
rounding identifiers, without considering the syntactic
relation to each of them.

All of the following experiments were performed using
CRFs for variable names prediction, on the Java corpus and
on the same hardware. In every experiment, the training
corpus and the rest of the settings were identical. The number
of training iterations was fixed.

Fig. 12 shows the accuracy of each abstraction compared
to the consumed training time. As shown, as more informa-
tion is kept, accuracy is increased, with the cost of a longer
training time. An interesting “sweet-spot” is “first-top-last”,
which reduces training time by half compared to the full
representation, with accuracy that is as 95% as good.

We also observe that the arrows and the order of the nodes
in the path contribute about 1% accuracy.

6 Related Work
Naming in Software Engineering Several studies about
naming in code have been conducted [6, 13, 21, 44]. Some of
them applied neural network approaches for various appli-
cations. An approach for inferring method and class names
was suggested by Allamanis et al. [6], by learning the simi-
larity between names; however, they used features that were
manually designed for a given task. A recent work presents
a convolutional attention model [7] and evaluates it by pre-
dicting method names. In Section 5, we show that using our
general approach yields better results.

Several works have studied the use of NLP techniques in
programming languages, for applications such as estimating
code similarity [46], naming convention recommendations
[5], program synthesis [16], translation between program-
ming languages [23] and code completion [20, 30, 41]. A

416

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
35

40

45

50

55

60

no-path

first-last

top

first-top-last
forget-order
no-arrows full

Training time (hours)

A
cc
ur
ac
y
(%
)

Figure 12. The accuracy of each abstraction method com-
pared to the consumed training time, for the task of variable
naming in Java

bimodal modeling of code and natural language was sug-
gested by Allamanis et al. [9], for tasks of code retrieval
given a natural language query, and generating a natural
language description given a code snippet.
A recent work presented a model that uses LSTM for

code summarization, which is interpreted as generating a
natural language description for given program [22]. This
work presents impressive results, but requires a very large
amount of human-annotated data.
Predicting programproperties using probabilistic graph-
ical models CRFs have been used for structured prediction
of program properties in JavaScript and Android Java code
[11, 40]. The method has been shown to produce good re-
sults for prediction of names and types, by modeling pro-
grams with CRFs. Raychev et al. [40] defined relationships
between program elements using an explicit grammar spe-
cific to JavaScript. The possible relationships span only a
single statement, and do not include relationships that in-
volve conditional statements or loops. Bichsel et al. [11] also
defined several types of features and the conditions in which
each of them is used. These works motivate a representation
that is extractable automatically and can be applied to differ-
ent languages. Instead of defining the relationships between
program elements in advance, we learn them from the train-
ing data in an automatic process that is similar for different
languages.
Parse Tree Paths An approach which resembles ours is
Parse Tree Paths (PTPs) in Natural Language Processing.
PTPs were mainly used in Semantic Role Labeling (SRL) —
the NLP task of identifying semantic roles such as Message,
Speaker or Topic in a natural language sentence. PTPs were
first suggested by Gildea and Jurafsky [17] for automatic

labeling of semantic roles, among other linguistic features.
The paths were extracted from a target word to each of
the constituents in question, and the method remains very
popular in SRL and general NLP systems. The rich and unam-
biguous structure of programming languages renders AST
paths even more important as a representation of program
elements than PTPs in natural language.
Code completion using PCFGs Probabilistic Context Free
Grammar (PCFG) for programming languages has been used
for several tasks, such as finding code idioms [8]. PCFGs
were generalized by Bielik et al. [12] by learning a relative
context node on which each production rule depends, al-
lowing conditioning of production rules beyond the parent
nonterminal, thus capturing richer context for each produc-
tion rule. Even though these works use paths in an AST,
they differ from our work in that the path is only used to
find a context node. In our work, the path itself is part of
the representation, and therefore the prediction depends not
only on the context node but also on the way it is related to
the element in question.
Mou et al. [34] used a tree-based representation to learn

snippets of code using a tree-convolutional neural network,
for tasks of code category classification. Our representation
differs from their mainly in that we decompose the AST into
paths, which better capture data-flow properties, whereas
their representation decomposes into sub-trees.

7 Conclusion
We presented a simple and general approach for learning
from programs. The main idea is to represent a program
using paths in its abstract syntax tree (AST). This allows a
learning model to leverage the structured nature of source
code rather than treating it as a flat sequence of tokens.

We show that this representation can be useful in a variety
of programming languages and prediction tasks, and can
improve the results of different learning algorithms without
modifying the learning algorithm itself.
We believe that since the representation of programs us-

ing AST paths is fundamental to programming languages, it
can be used in a variety of other machine learning tasks, in-
cluding different applications and different learning models.

Acknowledgments
We would like to thank Eytan Singher for implementing the
C# module of Pigeon. We also thank Miltiadis Allamanis,
Veselin Raychev and Pavol Bielik for their guidance in the
use of their tools in the evaluation section.

The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
(FP7) under grant agreement no. 615688-ERC- COG-PRIME.
Cloud computing resources were provided by a Microsoft
Azure for Research award and an AWS Cloud Credits for
Research award.

417

A General Path-Based Representation for Predicting Program Properties PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

References
[1] [n. d.]. JavaParser. http://javaparser.org.
[2] [n. d.]. Roslyn. https://github.com/dotnet/roslyn.
[3] [n. d.]. UglifyJS. https://github.com/mishoo/UglifyJS.
[4] [n. d.]. UnuglifyJS. https://github.com/eth-srl/UnuglifyJS.
[5] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton.

2014. Learning Natural Coding Conventions. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 2014). ACM, New York, NY, USA, 281–293. https:
//doi.org/10.1145/2635868.2635883

[6] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton.
2015. Suggesting Accurate Method and Class Names. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE 2015). ACM, New York, NY, USA, 38–49. https://doi.org/10.
1145/2786805.2786849

[7] Miltiadis Allamanis, Hao Peng, and Charles A. Sutton. 2016. A Con-
volutional Attention Network for Extreme Summarization of Source
Code. In Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016. 2091–
2100. http://jmlr.org/proceedings/papers/v48/allamanis16.html

[8] Miltiadis Allamanis and Charles Sutton. 2014. Mining Idioms from
Source Code. In Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE 2014). ACM,
New York, NY, USA, 472–483. https://doi.org/10.1145/2635868.2635901

[9] Miltiadis Allamanis, Daniel Tarlow, Andrew D. Gordon, and Yi Wei.
2015. Bimodal Modelling of Source Code and Natural Language. In
Proceedings of the 32nd International Conference on Machine Learning
(JMLR Proceedings), Vol. 37. JMLR.org, 2123–2132.

[10] Yoshua Bengio, RéjeanDucharme, Pascal Vincent, and Christian Janvin.
2003. A Neural Probabilistic Language Model. J. Mach. Learn. Res. 3
(March 2003), 1137–1155. http://dl.acm.org/citation.cfm?id=944919.
944966

[11] Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin Vechev.
2016. Statistical Deobfuscation of Android Applications. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’16). ACM, New York, NY, USA, 343–355. https://doi.
org/10.1145/2976749.2978422

[12] Pavol Bielik, Veselin Raychev, and Martin T. Vechev. 2016. PHOG:
Probabilistic Model for Code. In Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York City, NY, USA,
June 19-24, 2016. 2933–2942. http://jmlr.org/proceedings/papers/v48/
bielik16.html

[13] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp. 2009. Relating Identifier
Naming Flaws and Code Quality: An Empirical Study. In 2009 16th
Working Conference on Reverse Engineering. 31–35. https://doi.org/10.
1109/WCRE.2009.50

[14] Ronan Collobert and Jason Weston. 2008. A Unified Architecture for
Natural Language Processing: Deep Neural Networks with Multitask
Learning. In Proceedings of the 25th International Conference onMachine
Learning (ICML ’08). ACM, New York, NY, USA, 160–167. https://doi.
org/10.1145/1390156.1390177

[15] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa. 2011. Natural language processing
(almost) from scratch. Journal of Machine Learning Research 12, Aug
(2011), 2493–2537.

[16] Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey
Karkare, Mark Marron, Sailesh R, and Subhajit Roy. 2016. Program
Synthesis Using Natural Language. In Proceedings of the 38th Interna-
tional Conference on Software Engineering (ICSE ’16). ACM, New York,
NY, USA, 345–356. https://doi.org/10.1145/2884781.2884786

[17] Daniel Gildea and Daniel Jurafsky. 2002. Automatic Labeling of Se-
mantic Roles. Comput. Linguist. 28, 3 (Sept. 2002), 245–288. https:
//doi.org/10.1162/089120102760275983

[18] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature
Learning for Networks. In Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining.

[19] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2001. The
Elements of Statistical Learning. Springer New York Inc., New York,
NY, USA.

[20] AbramHindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar
Devanbu. 2012. On the Naturalness of Software. In Proceedings of the
34th International Conference on Software Engineering (ICSE ’12). IEEE
Press, Piscataway, NJ, USA, 837–847. http://dl.acm.org/citation.cfm?
id=2337223.2337322

[21] Einar W. Høst and Bjarte M. Østvold. 2009. Debugging Method Names.
In Proceedings of the 23rd European Conference on ECOOP 2009 —Object-
Oriented Programming (Genoa). Springer-Verlag, Berlin, Heidelberg,
294–317. https://doi.org/10.1007/978-3-642-03013-0_14

[22] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer.
2016. Summarizing Source Code using a Neural Attention Model. In
Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume
1: Long Papers. http://aclweb.org/anthology/P/P16/P16-1195.pdf

[23] Svetoslav Karaivanov, Veselin Raychev, and Martin Vechev. 2014.
Phrase-Based Statistical Translation of Programming Languages. In
Proceedings of the 2014 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming & Software (Onward!
2014). ACM, New York, NY, USA, 173–184. https://doi.org/10.1145/
2661136.2661148

[24] D. Koller, N. Friedman, L. Getoor, and B. Taskar. 2007. Graphical
Models in a Nutshell. In Introduction to Statistical Relational Learning,
L. Getoor and B. Taskar (Eds.). MIT Press.

[25] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira.
2001. Conditional Random Fields: Probabilistic Models for Segment-
ing and Labeling Sequence Data. In Proceedings of the Eighteenth
International Conference on Machine Learning (ICML ’01). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 282–289. http:
//dl.acm.org/citation.cfm?id=645530.655813

[26] Omer Levy and Yoav Goldberg. 2014. Dependency-Based Word Em-
beddings.. In ACL (2). Citeseer, 302–308.

[27] Omer Levy and Yoav Goldberg. 2014. Neural Word Embeddings as
Implicit Matrix Factorization. In Advances in Neural Information Pro-
cessing Systems 27: Annual Conference on Neural Information Processing
Systems 2014, December 8-13 2014, Montreal, Quebec, Canada. 2177–
2185.

[28] Ben Liblit, Andrew Begel, and Eve Sweeser. 2006. Cognitive Perspec-
tives on the Role of Naming in Computer Programs. In Proceedings of
the 18th Annual Psychology of Programming Workshop. Psychology of
Programming Interest Group, Sussex, United Kingdom.

[29] Cristina V. Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang,
Jakub Zitny, Hitesh Sajnani, and Jan Vitek. 2017. DéJàVu: A Map of
Code Duplicates on GitHub. Proc. ACM Program. Lang. 1, OOPSLA,
Article 84 (Oct. 2017), 28 pages. https://doi.org/10.1145/3133908

[30] Chris J. Maddison and Daniel Tarlow. 2014. Structured Generative
Models of Natural Source Code. In Proceedings of the 31st International
Conference on International Conference on Machine Learning - Volume
32 (ICML’14). JMLR.org, II–649–II–657. http://dl.acm.org/citation.cfm?
id=3044805.3044965

[31] Oren Melamud, Omer Levy, and Ido Dagan. 2015. A Simple Word
Embedding Model for Lexical Substitution. In Proceedings of the 1st
Workshop on Vector Space Modeling for Natural Language Processing,
VS@NAACL-HLT 2015, June 5, 2015, Denver, Colorado, USA. 1–7. http:
//aclweb.org/anthology/W/W15/W15-1501.pdf

[32] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Ef-
ficient Estimation of Word Representations in Vector Space. CoRR
abs/1301.3781 (2013). http://arxiv.org/abs/1301.3781

418

http://javaparser.org
https://github.com/dotnet/roslyn
https://github.com/mishoo/UglifyJS
https://github.com/eth-srl/UnuglifyJS
https://doi.org/10.1145/2635868.2635883
https://doi.org/10.1145/2635868.2635883
https://doi.org/10.1145/2786805.2786849
https://doi.org/10.1145/2786805.2786849
http://jmlr.org/proceedings/papers/v48/allamanis16.html
https://doi.org/10.1145/2635868.2635901
http://dl.acm.org/citation.cfm?id=944919.944966
http://dl.acm.org/citation.cfm?id=944919.944966
https://doi.org/10.1145/2976749.2978422
https://doi.org/10.1145/2976749.2978422
http://jmlr.org/proceedings/papers/v48/bielik16.html
http://jmlr.org/proceedings/papers/v48/bielik16.html
https://doi.org/10.1109/WCRE.2009.50
https://doi.org/10.1109/WCRE.2009.50
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/2884781.2884786
https://doi.org/10.1162/089120102760275983
https://doi.org/10.1162/089120102760275983
http://dl.acm.org/citation.cfm?id=2337223.2337322
http://dl.acm.org/citation.cfm?id=2337223.2337322
https://doi.org/10.1007/978-3-642-03013-0_14
http://aclweb.org/anthology/P/P16/P16-1195.pdf
https://doi.org/10.1145/2661136.2661148
https://doi.org/10.1145/2661136.2661148
http://dl.acm.org/citation.cfm?id=645530.655813
http://dl.acm.org/citation.cfm?id=645530.655813
https://doi.org/10.1145/3133908
http://dl.acm.org/citation.cfm?id=3044805.3044965
http://dl.acm.org/citation.cfm?id=3044805.3044965
http://aclweb.org/anthology/W/W15/W15-1501.pdf
http://aclweb.org/anthology/W/W15/W15-1501.pdf
http://arxiv.org/abs/1301.3781

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav

[33] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Distributed Representations of Words and Phrases and
Their Compositionality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems (NIPS’13). Curran
Associates Inc., USA, 3111–3119. http://dl.acm.org/citation.cfm?id=
2999792.2999959

[34] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolu-
tional Neural Networks over Tree Structures for Programming Lan-
guage Processing. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence (AAAI’16). AAAI Press, 1287–1293. http:
//dl.acm.org/citation.cfm?id=3015812.3016002

[35] Judea Pearl. 2011. Bayesian networks. (2011).
[36] Judea Pearl. 2014. Probabilistic reasoning in intelligent systems: networks

of plausible inference. Elsevier.
[37] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014.

GloVe: Global Vectors for Word Representation. In Empirical Methods
in Natural Language Processing (EMNLP). 1532–1543. http://www.
aclweb.org/anthology/D14-1162

[38] Veselin Raychev, Pavol Bielik, and Martin Vechev. 2016. Probabilistic
Model for Code with Decision Trees. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2016). ACM, New York,
NY, USA, 731–747. https://doi.org/10.1145/2983990.2984041

[39] Veselin Raychev, Pavol Bielik, Martin Vechev, and Andreas Krause.
2016. Learning Programs from Noisy Data. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL ’16). ACM, New York, NY, USA, 761–774.
https://doi.org/10.1145/2837614.2837671

[40] Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Pre-
dicting Program Properties from "Big Code". In Proceedings of the

42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL ’15). ACM, New York, NY, USA, 111–124.
https://doi.org/10.1145/2676726.2677009

[41] Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code Comple-
tion with Statistical Language Models. SIGPLAN Not. 49, 6 (June 2014),
419–428. https://doi.org/10.1145/2666356.2594321

[42] Shai Shalev-Shwartz and Shai Ben-David. 2014. UnderstandingMachine
Learning: From Theory to Algorithms. Cambridge University Press,
New York, NY, USA.

[43] Charles Sutton and Andrew McCallum. 2012. An Introduction to
Conditional Random Fields. Found. Trends Mach. Learn. 4, 4 (April
2012), 267–373. https://doi.org/10.1561/2200000013

[44] Armstrong A. Takang, Penny A. Grubb, and Robert D. Macredie. 1996.
The effects of comments and identifier names on program compre-
hensibility: an experimental investigation. J. Prog. Lang. 4, 3 (1996),
143–167. http://compscinet.dcs.kcl.ac.uk/JP/jp040302.abs.html

[45] Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010. Word Repre-
sentations: A Simple and General Method for Semi-supervised Learn-
ing. In Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics (ACL ’10). Association for Computational
Linguistics, Stroudsburg, PA, USA, 384–394. http://dl.acm.org/citation.
cfm?id=1858681.1858721

[46] Meital Zilberstein and Eran Yahav. 2016. Leveraging a Corpus of
Natural Language Descriptions for Program Similarity. In Proceedings
of the 2016 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward! 2016). ACM,
New York, NY, USA, 197–211. https://doi.org/10.1145/2986012.2986013

419

http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=3015812.3016002
http://dl.acm.org/citation.cfm?id=3015812.3016002
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.1145/2983990.2984041
https://doi.org/10.1145/2837614.2837671
https://doi.org/10.1145/2676726.2677009
https://doi.org/10.1145/2666356.2594321
https://doi.org/10.1561/2200000013
http://compscinet.dcs.kcl.ac.uk/JP/jp040302.abs.html
http://dl.acm.org/citation.cfm?id=1858681.1858721
http://dl.acm.org/citation.cfm?id=1858681.1858721
https://doi.org/10.1145/2986012.2986013

	Abstract
	1 Introduction
	2 Overview
	3 Background
	3.1 Conditional Random Fields
	3.2 Neural Word Embeddings

	4 AST Paths Representation
	4.1 AST Paths
	4.2 Limiting the Number of Paths

	5 Evaluation
	5.1 Prototype Implementation
	5.2 Experimental Setting
	5.3 Quantitative Evaluation
	5.4 Qualitative Evaluation
	5.5 Impact of Parameter Values
	5.6 Abstractions of AST Paths

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

